See the course website for homework policies.

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 5.

Problem 2. Please write up two of 13.4, 13.5, 13.6, 13.7.

Problem 3. Describe all actions of \(C_2 \) on \(C_{15} \).

Problem 4. Let \(G \) be the group of all symmetries of the plane of the form \([x \ y] \mapsto (-1)^by+a\) for \(a, b \in \mathbb{Z}\). This is the group of symmetries of the pattern below (imagined to fill the plane).

(1) Show that there is a short exact sequence \(1 \to \mathbb{Z}^2 \to G \to C_2 \to 1 \).
(2) Show that this sequence is not right split.

Problem 5. Let \(R \) be a ring (not assumed commutative) and let \(I \) be a two sided ideal of \(R \). We define \(I^m \) to be the two sided ideal generated by all products \(x_1x_2\cdots x_m \) for \(x_1, x_2, \ldots, x_m \in I \).

We define the ideal \(N \) to be *nilpotent* if there is a positive integer \(m \) such that \(N^m = (0) \). Let \(N \) be a nilpotent ideal and let \(U \) be the group \(\{1 + x : x \in N\} \). Show that \(U \) is a nilpotent group.

Problem 6. Let \(G \) be a group.

(1) The *upper (or ascending) central series* of \(G \) is defined inductively as follows: \(U_0 = \{e\} \) and \(U_{k+1} = \pi_k^{-1}(Z(G/U_k)) \), where \(\pi_k \) is the projection \(G \to G/U_k \). Show that \(G \) is nilpotent if and only if \(U_N = G \) for some \(G \).
(2) The *lower (or descending) central series* is defined inductively as follows: \(L^0 = G \) and \(L^{k+1} \) is the group generated by all products \(ghg^{-1}h^{-1} \) with \(g \in G \) and \(h \in L^k \). Show that \(G \) is nilpotent if and only if \(L^N = \{e\} \) for some \(G \).

Problem 7. Let \(p \) be an odd prime and let \(G \) be a group of order \(p^3 \). The aim of this problem is to show that \(G \) is isomorphic to one of:

\[
C_p^3, \quad C_p \times C_p, \quad C_p^2, \quad C_p^2 \times C_p, \quad C_p, \quad C_p^2 \times C_p, \quad C_p^2 \times C_p, \quad C_p.
\]

(1) Show that there is a central extension \(1 \to Z \to G \to C \to 1 \) with \(Z \cong C_p \) and either \(C \cong C_p^2 \) or \(C \cong C_p \).
(2) If \(C \cong C_p^2 \), show \(G \) is abelian and in the list above. **From now on, we assume \(C \cong C_p^2 \).**
(3) Let \(g_1 \) and \(g_2 \in G \) and set \(z = g_1g_2g_1^{-1}g_2^{-1} \). Show that \(g_1^p, g_2^p \) and \(z \) are in \(Z \).
(4) Show that \((g_1g_2)^k = g_1^k g_2^k z^{-k} \).
(5) Show that the map \(g \mapsto g^p \) is a group homomorphism \(G \to Z \) and that it factors through the quotient \(C \). (Here is where you will need that \(p \) is odd; this is false for \(Q_8 \).)
(6) Show that we can choose \(g_1 \) and \(g_2 \) in \(G \), mapping to a basis of \(C \), such that \(g_1^p = 1 \).
(7) Set \(A' = \langle g_2 \rangle Z \) and \(C' = \langle g_1 \rangle \). Show that \(G = A' \times C' \) and that \(A' \) is either \(C_p^2 \) or \(C_{p^2} \).
(8) Classify the actions of \(C' \) on \(A' \) and thus show that \(G \) is one of the groups listed above.