PROBLEM SET 8
DUE MARCH 22, 2011

WORKING WITH HERMITIAN FORMS IN COORDINATES

1. On \(\mathbb{C}^2 \), let the coordinates be \(z_1 = x_1 + iy_1 \) and \(z_2 = x_2 + iy_2 \). Consider the Hermitian form \(pdz_1 \otimes \overline{dz_1} + (q + ir)dz_1 \otimes \overline{dz_2} + (q - ir)dz_2 \otimes \overline{dz_2} + sdz_2 \otimes \overline{dz_2} \) for real numbers \(p, q, r \) and \(s \).

Expand this form as \(g - i\omega \), and express \(g \) and \(\omega \) in the \(x_1, x_2, y_1, y_2 \) coordinates. Check directly that \(g \) is symmetric and \(\omega \) is antisymmetric.

SOME PRACTICE USING “NICE” COORDINATES

2. Let \(g - i\omega \) be a Kähler form and let \(* \) be the Hodge star with respect to \(g \). Show that \(d^* \omega = 0 \).

3. Let \(X \) be a compact Kähler manifold. Let \(L : \Omega^k \rightarrow \Omega^{k+2} \) be the map \(\eta \rightarrow \omega \wedge \eta \). Let \(\Lambda = *^{-1}L* \). Show that, for \(\eta \in \Omega^k \), we have \(\Lambda(L\eta) - L(\Lambda\eta) = (n-k)\eta \).

AN ALGEBRAIC CONSEQUENCE OF HODGE’S THEOREM

4. Let \(X \) be a compact Kähler manifold. Let \(\mathcal{H}^p \) and \(\mathcal{Z}^{p+1} \) be the sheaves of holomorphic \(p \)-forms and \(\partial \)-closed holomorphic \((p+1) \)-forms respectively.

 (1) For every \(q \), show that the map \(H^q(X, \mathcal{H}^p) \xrightarrow{\partial} H^q(X, \mathcal{Z}^{p+1}) \) is zero. (Hint: This is really simple using harmonic representatives.)

 (2) For \(X \) a compact complex manifold, even without the Kähler condition, show that \(H^0(X, \mathcal{H}^0) \rightarrow H^0(X, \mathcal{H}^1) \) is zero.

5. The point of this exercise is to explore the consequences of problem 4. Just using the fact that \(H^q(X, \mathcal{H}^p) \xrightarrow{\partial} H^q(X, \mathcal{Z}^{p+1}) \) is zero, show the following:

 (1) There is a short exact sequence \(0 \rightarrow H^0(X, \mathcal{H}^1) \rightarrow H^1(X, \mathbb{C}) \rightarrow H^1(X, \mathcal{H}^0) \rightarrow 0 \).

 (2) There is a filtration \(0 \subseteq F_1 \subseteq F_2 \subseteq H^2(X, \mathbb{C}) \) such that \(F_1 \cong H^0(X, \mathcal{H}^2) \), \(F_2/F_1 \cong H^1(X, \mathcal{H}^1) \) and \(H^2(X, \mathbb{C})/F_2 \cong H^2(X, \mathcal{H}^0) \).

THE FORMAL CONSEQUENCES OF THE KÄHLER IDENTITIES

6. The point of this exercise is to study a formal algebraic model; this will correspond to the action of the various differential operators on the \(\lambda \)-eigenspaces of \(\Delta \) for \(\lambda > 0 \).

 Let \(\lambda > 0 \). Let \(V^{p,q} \), for \(0 \leq p, q \leq n \) be \((n+1)^2 \) finite dimensional vector spaces with maps \(\partial, \overline{\partial}, \partial^* \) and \(\overline{\partial}^* \) between them shifting degrees in the obvious manners. Suppose that

 (1) \(\partial^2, \overline{\partial}^2, (\partial^*)^2 \) and \((\overline{\partial}^*)^2 \) are all zero.

 (2) \(\partial\overline{\partial} + \partial\overline{\partial}^* + \overline{\partial}^* \partial, \partial^* \overline{\partial} + \overline{\partial} \partial^* + \overline{\partial}^* \partial^* \) and \(\partial^* \overline{\partial} + \overline{\partial} \partial^* \) are all zero.

 (3) \(\partial\partial^* + \partial^* \partial = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial} = \lambda \mathrm{Id} \).

Let \(Z^{p,q} \) be the subspace of \(V^{p,q} \) where \(\partial^* \) and \(\overline{\partial}^* \) are zero.

 (1) Show that \(Z^{p,q} \) is isomorphic to \(\partial Z^{p,q} \) and to \(\overline{\partial} Z^{p,q} \).

 (2) Show that \(Z^{p,q} \) is isomorphic to \(\partial \overline{\partial} Z^{p,q} \). Note: This requires nontrivial diagram tracing.

 (3) Show that \(V^{p,q} \cong Z^{p,q} \oplus \partial Z^{p-1,q} \oplus \overline{\partial} Z^{p,q-1} \oplus \partial \overline{\partial} Z^{p-1,q-1} \).