First, a warm up problem:

Problem 8.1. Suppose that

\[w = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}. \]

What is \(N_- w \cap wN_+ \)? What open subset of it is \(N_+ B_- \cap (N_- w \cap wN_+) \)?

Recall that we would like to know that \(N_+ \cap B_- wB_- \) is a manifold of dimension \(\ell(w) \).

Problem 8.2. Show that

\(N_+ \cap B_- wB_- \cong (N_+ B_- \cap B_- wB_-)/B_- \).

Recall that every element of \(B_- wB_- \) has a unique factorization in the form \((N_- \cap wN_+ w^{-1})wB_- \) or, equivalently, \((N_- w \cap wN_+)B_- \).

Problem 8.3. Show that

\((N_+ B_- \cap B_- wB_-)/B_- \cong N_+ B_- \cap (N_- w \cap wN_+) \).

Problem 8.4. Show that \(N_+ B_- \cap (N_- w \cap wN_+) \) is an open subset of \(N_- w \cap wN_+ \), and \(N_- w \cap wN_+ \cong \mathbb{R}^{\ell(w)} \).