NOTES FOR NOVEMBER 19, 2012: INTERACTION BETWEEN \(\mathfrak{gl}_2 \) STRINGS

AARON PRIBADI

1. FROM LAST CLASS (\(\mathfrak{gl}_2 \) REPRESENTATIONS)

The Lie algebra \(\mathfrak{gl}_n \) consists of the \(n \times n \) matrices with bracket \([A,B] = AB - BA\). It has a basis of elementary matrices \(E_{ij} \) with a single 1 in \(i \)th row and \(j \)th column, and 0’s everywhere else.

Define

\[
h_k = E_{kk}, \quad e_k = E_{k(k+1)}, \quad f_k = E_{(k+1)k}.\]

In particular,

\[
h_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad h_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
\]

are elements of \(\mathfrak{gl}_2 \).

For any smooth representation \(\rho : \text{GL}_n \to \text{GL}(V) \), the differential of \(\rho \) is a Lie algebra representation \(\sigma : \mathfrak{gl}_n \to \mathfrak{gl}(V) = \text{End}(V) \). If \(v \in V \) is in the \((p_1, \ldots, p_n)\) weight space, that is, if

\[
\rho \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \cdot v = (t_1^{p_1} \cdots t_n^{p_n})v,
\]

then \(\sigma(E_{ij})v \) is in the \((p_1, p_2, \ldots, p_i + 1, \ldots, p_j - 1, \ldots, p_n)\) weight space.

Consider the \(\text{GL}_2 \)-representation \(V(k)(2) \) and the corresponding \(\mathfrak{gl}_2 \)-representation. It has a weight basis with weights \((k, 0), (k-1, 1), \ldots, (0, k)\). In that (ordered) basis, the \(\mathfrak{gl}_2 \)-representation is given by

\[
\sigma : \mathfrak{gl}_2 \to \text{End}(V(k)(2)) \quad h_1 \mapsto \begin{pmatrix} k & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, \quad h_2 \mapsto \begin{pmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix},
\]

\[
e_1 \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ \vdots & \ddots \end{pmatrix}, \quad f_1 \mapsto \begin{pmatrix} 0 & \cdots & 0 \\ k & \cdots & 0 \\ \vdots & 2 & 0 \end{pmatrix}.
\]

The actions of \(e_1 \) and \(f_1 \) on \(V(k)(2) \) are captured in the following picture

\[
(0, k) \quad \bullet \quad k \quad \bullet \quad k - 1 \quad \bullet \quad 1 \quad \bullet \quad 2 \quad \bullet \quad \ldots \quad \bullet \quad (k, 0)
\]

\[(0, k) \xrightarrow{e_1} (k, 0) \quad \bullet \quad (k-1, 1) \quad \bullet \quad (k-2, 2) \quad \ldots \quad \bullet \quad (1, k-1) \quad \bullet \quad (0, k)
\]

\[k \xrightarrow{f_1} k - 1 \quad \bullet \quad (k, 0) \quad \bullet \quad (k-1, 1) \quad \bullet \quad (k-2, 2) \quad \ldots \quad \bullet \quad (1, k-1) \quad \bullet \quad (0, k)
\]
where the dots (●) are weight spaces and the arrows for \(e_1 \) and \(f_1 \) are labeled with their factor.

For the representation \(V_{(k,\ell)}(2) \cong (\det)^{\otimes \ell} \otimes V_{(k-\ell)} \), the picture for \(V_{(k-\ell)} \) is shifted to the weights \((k,\ell), (k-1,\ell+1), \ldots, (\ell,k)\).

\[
\begin{array}{c}
(\ell,k) \\
\vdots \\
1 \\
2 \\
\vdots \\
k-\ell \\
1 \\
(k,\ell)
\end{array}
\]

Remark: \(\mathfrak{sl}_2 \) controls the world!

2. Interaction of \(\mathfrak{gl}_2 \) Strings

How do \((e_j, f_j)\) act on \((e_k, f_k)\) strings of a \(\mathfrak{gl}_n \)-representation?

Proposition 1. For any \(\mathfrak{gl}_n \)-representation:
- If \(|j-k| \geq 2\), then \((e_j, f_j)\) preserves the length of the \((e_k, f_k)\) string.
- If \(|j-k| = 1\), then \(e_j\) and \(f_j\) can only map between strings whose lengths differ by \(\pm 1\).

Proof. Let \((\sigma, W)\) be a \(\mathfrak{gl}_n \)-representation. Define

\[
\phi_i : \mathfrak{gl}_2 \rightarrow \mathfrak{gl}_n
\]

by inserting the \(2 \times 2\) matrix in the rows \(i\) and \(i+1\) and the columns \(i\) and \(i+1\), with everything else zero.

\[
\begin{pmatrix}
0 & \ddots & \ & \ \\
& \ & \ast & \ast \\
& \ & \ast & \ast \\
& \ & \ddots & \\
& \ & \ & 0
\end{pmatrix}
\]

Suppose that \(|j-k| \geq 2\). Then \([\phi_j(\mathfrak{gl}_2), \phi_k(\mathfrak{gl}_2)] = 0\). Any two matrices \(u \in \phi_j(\mathfrak{gl}_2)\) and \(v \in \phi_k(\mathfrak{gl}_2)\) must commute, so \(\sigma(u) : W \rightarrow W\) is a map of \(\phi_k(\mathfrak{gl}_2)\)-representations. So the \(\phi_k(\mathfrak{gl}_2)\)-isotypic components of \(W\) are invariant under \(\sigma(u)\), and \(\sigma(u)\) preserves the length of \((e_k, f_k)\) strings.

The proof of the second statement uses the Serre relation, which will be introduced later. \(\square\)

Example 2. Consider \(V_{(2,1)}(3) \). It has weight spaces

\[
\begin{array}{c}
(1,2,0) \\
(2,1,0) \\
(0,2,1) \\
(1,1,1) \\
(2,0,1) \\
(0,1,2) \\
(1,0,2)
\end{array}
\]

and all of the weight spaces are one-dimensional except for \((1,1,1)\), which is two-dimensional.
The $(1, 1, 1)$ weight space contains the semistandard basis elements \(\{ \Delta_{12}\Delta_3, \Delta_{13}\Delta_2 \} \). If we instead split the $(1, 1, 1)$ weight space into the basis \(\{ \frac{1}{2}(\Delta_{23}\Delta_1 + \Delta_{13}\Delta_2), \frac{1}{2}(\Delta_{23}\Delta_1 - \Delta_{13}\Delta_2) \} \), we have the picture

where the horizontal solid arrows are \((e_1, f_1)\) strings and the diagonal dashed arrows are \((e_2, f_2)\) strings.

The \((e_1, f_1)\) and \((e_2, f_2)\) strings come from the restriction of the \(GL_3\)-representation \(V_{(2,1)}(3) \) to the subgroups

\[
\begin{pmatrix}
* & * & 0 \\
* & * & 0 \\
0 & 0 & 1
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{pmatrix}
\]

both isomorphic to \(GL_2\).

For an example of the computations involved, consider the \(f_2\) string

\(\Delta_{12}\Delta_2 \xrightarrow{f_2} \frac{1}{2}(\Delta_{23}\Delta_1 + \Delta_{13}\Delta_2) \xrightarrow{f_2} \Delta_{13}\Delta_3. \)

Act on \(\Delta_{12}\Delta_2\) with the \(GL_3\) action by \((1 + \epsilon f_2)\)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \epsilon & 1
\end{pmatrix} \cdot \begin{pmatrix}
z_{11} & z_{12} \\
z_{21} & z_{22}
z_{12} & z_{12}
\end{pmatrix} = \begin{pmatrix}
z_{11} & z_{12} + \epsilon z_{13} \\
z_{21} & z_{22} + \epsilon z_{23}
z_{12} & z_{12} + \epsilon z_{13}
\end{pmatrix}
\]

\[= \Delta_{12}\Delta_2 + \epsilon(\Delta_{12}\Delta_3 + \Delta_{13}\Delta_2)\]
so that we get $\Delta_{12}\Delta_3 + \Delta_{13}\Delta_2$. The action of the Lie algebra also is a derivation (i.e. satisfies the Liebniz rule), so we can compute the same thing with

$$f_2(\Delta_{12}\Delta_2) = \Delta_{12}f_2(\Delta_2) + f_2(\Delta_{12})\Delta_2 = \Delta_{12}\Delta_3 + \Delta_{13}\Delta_2.$$

Note that it has the correct factor of 2 times the basis element.

The second segment of the string is

$$f_2\left(\frac{1}{2}(\Delta_{12}\Delta_3 + \Delta_{13}\Delta_2)\right) = \frac{1}{2}(f_2(\Delta_{12})\Delta_3 + \Delta_{12}f_2(\Delta_3) + f_2(\Delta_{13})\Delta_2 + \Delta_{13}f_2(\Delta_2))$$

$$= \frac{1}{2}(\Delta_{13}\Delta_3 + \Delta_{13}\Delta_3)$$

$$= \Delta_{13}\Delta_3$$

as claimed.

From the pictures, one can also verify that the actions of (e_1, f_1) change the string length of (e_2, f_2) by ± 1, and vice versa.

3. Serre relation

Proposition 3 (Serre relation). For any \mathfrak{gl}_n-representation $\sigma : \mathfrak{gl}_n \to \text{End}(W)$, we have

$$\sigma(f_k)^2\sigma(f_{k+1}) - 2\sigma(f_k)\sigma(f_{k+1})\sigma(f_k) + \sigma(f_{k+1})\sigma(f_k)^2 = 0$$

et cetera. Similar relations hold with f_k and f_{k+1} swapped, and with e's turned into f's.

For notation simplicity, we drop the σ's.

Proof. For the first equations,

$$f_k^2 f_{k+1} - 2f_k f_{k+1}f_k + f_{k+1} f_k^2 = [f_k, f_k f_{k+1} - f_{k+1} f_k]$$

$$= [f_k, [f_k, f_{k+1}]]$$

$$= [E_{(k+1)k}, [E_{(k+1)k}, E_{(k+2)(k+1)}]]$$

$$= [E_{(k+1)k}, -E_{(k+2)k}] = 0.$$

The other equations are similar, and the map of Lie algebras preserves the bracket.

The Serre relation can be used to show that two (e_k, f_k) strings whose lengths differ by something other than ± 1 cannot be mapped to each other by f_{k+1} (or by $e_{k+1}, f_{k-1},$ or e_{k-1}).

Proof. Suppose that the target string is at least two longer than the source string. Then at least one end has two extra nodes. Consider this illustration, where left arrows (\leftarrow) are f_k, right arrows (\rightarrow) are e_k, and dashed diagonal arrows ($\triangleleft\triangleright$) are f_{k+1}.

```
  u0   u1   u2   u3
    \--\    \--\    \--\    \--\
    \--\    \--\    \--\    \--\
  v6   v5   v4   v3   v2   v1   v0
```

In this picture, in order to get the Serre relation

$$f_k^2 f_{k+1} - 2f_k f_{k+1}f_k + f_{k+1} f_k^2 = 0$$

starting from the vector u_0, we must have $f_{k+1} \cdot u_0$. Similarly, $f_{k+1} \cdot u_1 = 0$, and by induction $f_{k+1} u_i = 0$ for all u_i in the top string.

If the target string is at least two shorter than the source string, then we have this picture.

```
  v6   v5   v4   v3   v2   v1   v0
    \--\    \--\    \--\    \--\    \--\    \--\    \--\
    \--\    \--\    \--\    \--\    \--\    \--\    \--\
```

For the Serre relation to hold here, $f_{k+1}(f_k^2(v_0)) = 0$. Again by induction, all f_{k+1} maps are zero.

If the two strings are the same length, the f_{k+1} maps cannot go between the relevant weights.
The above arguments also work for $f_{k+1}, e_{k+1}, f_{k-1}$, and e_{k-1}. Thus, these maps can only map (e_k, f_k) strings to each other if the lengths of the strings differ by ± 1. \qed