We continue our study of GL_n representations and begin connecting them to unitary representations.

1. Setup

We will use the following notation throughout:

$$G = GL_n(\mathbb{C}),$$
$$K = U_n(\mathbb{C}) = \{ U \in GL_n(\mathbb{C}) : U^T U = \text{Id} \} = \text{the unitary group},$$
$$T = \{ \text{diagonal matrices in } GL_n(\mathbb{C}) \} = \text{(the torus)},$$
$$S = K \cap T.$$

Note that K, the unitary group, is compact, as is S. Our goal is to get from understanding the unitary group to understanding GL_n. First, we need some facts from complex analysis.

Lemma 1. Let f be an analytic function defined on an open neighborhood U of 0 in \mathbb{C}^n. If $f \equiv 0$ on $\mathbb{R}^n \cap U$, then $f = 0$.

Proof. By induction: the base case is clear ($\mathbb{C}^0 = \mathbb{R}^0 = \text{a point}$). Now if $f \neq 0$, write its power series as follows:

$$f(z_1, \ldots, z_n) = z_n^N g(z_1, \ldots, z_{n-1}) + z_n^{N+1} h(z_1, \ldots, z_n),$$

with h and g analytic and $g \neq 0$. Now divide out the z_n^N and observe that

$$\frac{f}{z_n^N} \bigg|_{U \cap (\mathbb{R}^n \setminus \mathbb{R}^{n-1} \times \{0\})} = 0.$$

So by continuity,

$$g + z_n h \big|_{U \cap (\mathbb{R}^{n-1} \times \{0\})} = 0$$

as well. In particular, since $z_n = 0$ on this part, we just get $g = 0$ on $U \cap (\mathbb{R}^{n-1} \times \{0\})$. By induction we conclude $g = 0$ everywhere, a contradiction. □

We also have a coordinate-free version of this lemma, namely:

Lemma 2. Let V be a finite-dimensional \mathbb{C}-vector space and W an \mathbb{R}-subspace with $V = W \oplus iW$. If $f : V \to \mathbb{C}$ is analytic and $f|_W = 0$, then $f = 0$.

We omit the proof; note that the decomposition $V = W \oplus iW$ ensures that an \mathbb{R}-basis for W is also (grouping its elements together in pairs) a \mathbb{C}-basis for V. We apply this lemma to our study of $n \times n$ matrices in the following form:

Lemma 3. If $f : G \to \mathbb{C}$ is analytic and $f|_K = 0$, then $f = 0$.

Proof. Pull f back to $\text{Mat}_{n \times n}(\mathbb{C})$, defining $g(X) = f(\exp(i \cdot X))$. Then $g : \text{Mat}_{n \times n}(\mathbb{C}) \to \mathbb{C}$ is analytic and $g = 0$ on the set of Hermitian matrices. Hence $g = 0$. □

We will use this trick multiple times: restricting or reducing to a compact subgroup in order to conclude something about the whole group (which isn’t compact). Here are some applications of the above:

Application 4. Say V, W are analytic G-representations. Then $\mathcal{H}\text{om}_G(V, W) = \mathcal{H}\text{om}_K(V|_K, W|_K)$.

Proof. Given a linear map $A \in \mathcal{H}\text{om}(V, W)$, saying that A commutes with the G-action, $A \in \mathcal{H}\text{om}_G(V, W)$, is just the statement $A \cdot \rho_V(g) = \rho_W(g) \cdot A$. This is an equality of analytic functions of g; so, by our lemma, equality holds on G if and only if it holds on K. □
In other words, Hom-spaces don’t change under restricting to a compact subgroup.

Application 5. Say V, W are analytic G-representations. Then

\[V \cong W \text{ (as } G\text{-reps)} \iff V|_K \cong W|_K \text{ (as } K\text{-reps)}. \]

Proof. The left-hand statement is equivalent to the existence of a square matrix of full rank in $\text{Hom}_G(V, W)$. The right-hand statement is analogous, but with $\text{Hom}_K(V|_K, W|_K)$. So, apply the previous application. \hfill \Box

Application 6. Let V be an analytic G-representation. If W is a K-subrepresentation, then W is also a G-subrepresentation.

Proof. Pick linear maps $\lambda_1, \ldots, \lambda_r : V \to \mathbb{C}$ such that $W = \bigcap \ker(\lambda_i)$. We want to show $\rho_V(g) \cdot w \in W$ for all $g \in G$. Thus, it’s sufficient to show that $\lambda_j(\rho_V(g) \cdot w) = 0$ for each j. Each of these is an analytic function of g. \hfill \Box

Corollary 7. Given V an analytic G-representation, V is simple (over G) if and only if $V|_K$ is simple over K.

Corollary 8. Every analytic G-representation is a direct sum of simple G-representations.

This last part is actually hard to do without passing to a compact group! In particular, it is hard to give a purely algebraic proof of this.

A high-level way of describing our results so far is to say that if you start with something from G, you can just study it on K. It’s not obvious that we can go the other way, i.e. that K-representations extend to G-representations. Our next goal, therefore, is to show that every continuous K-representation lifts to a rational G-representation.

2. Cautionary examples

Here’s a cautionary example of what can go wrong with other groups G, K: let G instead be the (projective) elliptic curve $y^2 = x^3 - 1$. This is an abelian group, so all of its irreducible representations are one-dimensional. Let K be its set of real points, so that $K \cong \mathbb{R}/\mathbb{Z} \cong S^1$. We know there is a representation of \mathbb{R}/\mathbb{Z} given by $\theta \mapsto e^{2\pi i \theta}$. But, by compactness of G, we know there are no nonconstant analytic maps $G \to \mathbb{C}^*$!

The problem here is that although the functions will extend out from K, they don’t extend to all of G: they have branches that cause problems when you wrap around G. (One way to lift them successfully would be to go to a covering space of G).

Paragraph added by David Here is another example. The group $SL_3(\mathbb{R})$ injects into $PSL_3(\mathbb{C})$. (The kernel of $SL_3(\mathbb{C}) \to PSL_3(\mathbb{C})$ is the three element subgroup $\zeta^r \cdot \text{Id}_3$, where ζ is a third root of unity.) There are representations of $SL_3(\mathbb{R})$, for example the standard action on \mathbb{C}^3, which do not extend to $PSL_3(\mathbb{C})$, because they require functions which are only defined on $SL_3(\mathbb{C})$.

Paragraph added by David A deep theorem is that the above two examples cover all issues. Specifically, let G be a connected complex Lie group, and K a real subgroup with $T_e G = T_e K \oplus iT_e K$, where $T_e X$ is the tangent space to X at the identity. If G is affine (ruling out the elliptic curve example) and K is compact (ruling out the PSL_3 example) then every continuous representation of K extends to an analytic representation of G. David doesn’t know a conceptual proof of this theorem; only one that works by classifying all possible pairs (G, K) and seeing that they work. We will not be proving this.

Paragraph added by David, on material not mentioned in class Given a compact real Lie group K, it turns out that $O(K)$ is a finitely generated \mathbb{C} algebra, and Spec $O(K)$ is a complex Lie group G with a natural embedding $K \hookrightarrow G$ for which the continuous representation theory of K and the analytic representation theory of G are equivalent. We will not be proving this either.

3. Lifting K-representations to G-representations

We go back to $G = GL_n, K = U(n)$. Our goal is to prove:

Theorem 9. Let V be a continuous K-representation. Then K lifts to a rational G-representation.
We begin by analyzing the characters of representations of the unitary group K. These will eventually give us a ‘hint’ as to how to find the appropriate rational representations of G. We first analyze χ_V on the compact torus S, bearing in mind that every unitary matrix is diagonalizable (and χ_V is a class function).

Lemma 10. Let V be a continuous K-representation. Then $\chi_V : S \to \mathbb{C}$ is a symmetric Laurent polynomial in the eigenvalues $e^{i\theta_1}, \ldots, e^{i\theta_n}$.

Proof. We know $V|_S$ breaks up as a direct sum of S-simple representations. Since S is abelian, every simple representation of it is one-dimensional: each is easily seen to be of the form

$$e^{i\theta_1}, \ldots, e^{i\theta_n} \mapsto e^{i(k_1\theta_1 + \cdots + k_n\theta_n)}$$

for some $k_1, \ldots, k_n \in \mathbb{Z}$. This shows $\chi_V|_S$ is a Laurent polynomial in the $e^{i\theta_j}$. To see that it is symmetric, consider a permutation $w \in S_n \subset U(n)$. Then we have

$$w \cdot \begin{pmatrix} e^{i\theta_1} & \cdots & e^{i\theta_n} \\ e^{i\theta_2} & \cdots & e^{i\theta_n} \\ \vdots & \ddots & \vdots \\ e^{i\theta_n} & \cdots & e^{i\theta_1} \end{pmatrix} w^{-1} = \begin{pmatrix} e^{i\theta_{w(1)}} & \cdots & e^{i\theta_{w(n)}} \\ \vdots & \ddots & \vdots \\ e^{i\theta_{w(n)}} & \cdots & e^{i\theta_{w(1)}} \end{pmatrix}$$

We know χ_V is a class function, so we conclude that

$$\chi_V(e^{i\theta_1}, \ldots, e^{i\theta_n}) = \chi_V(e^{i\theta_{w(1)}}, \ldots, e^{i\theta_{w(n)}}).$$

Thus $\chi_V|_S$ is symmetric. \qed

Now we begin the lifting process: we find some representations of G whose characters are close to what we’re looking for. We now know to look for symmetric Laurent polynomials in the eigenvalues x_1, \ldots, x_n of our matrices, so we’ll show something stronger: we can obtain any such function.

Lemma 11. For any $f \in \Lambda_n^\pm$, there are rational representations W^+ and W^- of G such that

$$\chi_{W^+}|_S - \chi_{W^-}|_S = f.$$

Proof. Clear denominators: we know that, for some N, $(x_1 \cdots x_n)^N f \in \Lambda_n$. Write this in the e basis and separate the terms with positive and negative coefficients, as in

$$(x_1 \cdots x_n)^N f = \sum_{\lambda} c_{\lambda} e_\lambda - \sum_{\lambda} d_{\lambda} e_\lambda,$$

with $c_{\lambda}, d_{\lambda} \geq 0$. Note that if \mathbb{C}^n is the obvious representation of G, then $\chi_{\mathbb{C}^n} = e_k(x_1, \ldots, x_n)$. As a special case, the character of the determinant representation is $x_1 \cdots x_n$. So, set

$$U^+ = \bigoplus_{\lambda} \left(\bigwedge_{1}^{\lambda_1} \mathbb{C}^n \otimes \cdots \otimes \bigwedge_{n}^{\lambda_n} \mathbb{C}^n \right)^{\otimes c_{\lambda}} , \quad W^+ = (\det)^{-N} \otimes U^+.$$

Observe that the character of W^+ is precisely $(x_1 \cdots x_n)^{-N} \sum_{\lambda} c_{\lambda} e_\lambda$. Similarly, set

$$U^- = \bigoplus_{\lambda} \left(\bigwedge_{1}^{\lambda_1} \mathbb{C}^n \otimes \cdots \otimes \bigwedge_{n}^{\lambda_n} \mathbb{C}^n \right)^{\otimes d_{\lambda}} , \quad W^- = (\det)^{-N} \otimes U^-.$$

Then W^+ and W^- are the desired rational representations of G. \qed

Now that we’ve found the “right” characters and representations, our lifting theorem follows easily. We get to K (by diagonalization), then to G (by analyticity).

Proof of Theorem 9. By Lemma 4, the restriction of χ_V to S is in Λ_n^\pm. So, by the previous lemma, we can find rational G-representations W^+ and W^- such that

$$\chi_V|_S = \chi_{W^+}|_S - \chi_{W^-}|_S.$$

We know every unitary matrix is diagonalizable, so we can decompose K as

$$K = \bigcup_{k \in K} kSk^{-1}.$$
This shows that, in fact, equality holds on all of K: $\chi_V|_K = \chi_{W^+}|_K - \chi_{W^-}|_K$. Since we know that representations of compact groups are determined by their characters, we have:

$$V \oplus W^- \cong W^+$$

as K-representations. In particular, V is a K-subrep of W^+, hence also a G-subrep of W^+.

The same approach yields a similar lifting property for polynomial representations.

Lemma 12. If $f \in \Lambda_n$, then there exist polynomial G-representations W^+ and W^- such that $\chi_{W^+} - \chi_{W^-} = f$. If V is a K-representation such that χ_V is in Λ_n, then V lifts to a polynomial representation of G.

Thus we make the following conclusion: characters of polynomial GL_n-irreducible representations span Λ_n, hence (by linear independence) are a basis for it. Similarly, characters of rational GL_n-irreducible representations are a basis for Λ_n^\pm. Our basis works in each degree separately. So we deduce a nice numerical consequence:

$$\#\{\text{poly irreps of } \text{GL}_n \text{ such that the character has degree } d\} = \#\{\text{partitions}(d)\}.$$