NOTES FOR OCTOBER 12
SCRIBE DAVID SPEYER

The goal for today’s lecture is to prove:

Theorem 1. The characters of polynomial GL_n irreps are the Schur functions.

The key will be to prove the following Peter-Weyl-like theorem

Theorem 2. Consider the polynomial ring in n^2 variables z_{ij}. As a $GL_n \times GL_n$ representation, we have

$$C[z_{ij}] \cong \bigoplus_{V \text{ a polynomial irrep}} V^\vee \otimes V.$$

As in Peter-Weyl, this sum means to take each isomorphism class once.

We continue the abbreviations

$$G = GL_n \quad K = U(n) \quad T = \{\text{diag}(z_1, \ldots, z_n) : z_i \in \mathbb{C}^*\} \quad S = K \cap T = \{\text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})\}.$$

1. **Proof of Theorem 2**

We have a map $C[z_{ij}] \to C^0(K)$ by restricting functions to the unitary group. Since polynomials in the z_{ij} are analytic functions, this map is injective by the key lemma from last time. We claim that it lands in $O(K)$. Proof: $C[z_{ij}] = \bigoplus_d C[z_{ij}]_d$, where $C[z_{ij}]_d$ is homogeneous polynomials of degree d. Now, $C[z_{ij}]_d$ is clearly a finite dimensional $K \times K$ subrep of $C^0(K)$. So, by results from October 8, it is in $O(K)$.

Therefore, $C[z_{ij}] \cong \bigoplus_{V \in S} V^\vee \otimes V$ for some set S of simple representations of K. We now must determine what the set S is.

Let V occur in $C[z_{ij}]$. Looking at the $1 \times G$ action on V, it is clear that V is a polynomial G rep. So every representation $V \in S$ is the restriction of a polynomial representation of G.

On the other hand, if V is a polynomial representation of G, then the embedding $\text{End}(V)^\vee \to C^0(G)$ clearly lands in $C[z_{ij}]$. Explicitly, we are saying that $\chi(\rho_V(g))$ is a polynomial in the z’s, given that the entries of $\rho_V(g)$ are such a polynomial; that is obvious.

So we conclude that S is the set of polynomial representations of G as desired.

2. **A combinatorial consequence**

Consider both sides of Theorem 2 as $T \times T$ representations. To be precise, we are going to be acting by $\text{diag}(x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}) \times \text{diag}(y_1, y_2, \ldots, y_n)$. (The inverses in the first term are precisely there to cancel the inverses defining the action of $G \times G$ on $C^0(G)$.)

On the left hand side, z_{ij} transforms by $x_i y_j$. So the character of the left hand side is

$$\prod_{1 \leq i,j \leq n} \frac{1}{1 - x_i y_j}.$$

On the right hand side, $\text{diag}(x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}) \times \text{diag}(y_1, y_2, \ldots, y_n)$ acts on $V^\vee \otimes V$ by

$$\chi_{V^\vee}(x_1^{-1}, \ldots, x_n^{-1})\chi_V(y_1, \ldots, y_n) = \chi_V(x_1, \ldots, x_n)\chi_V(y_1, \ldots, y_n).$$

So we deduce

$$\prod_{1 \leq i,j \leq n} \frac{1}{1 - x_i y_j} = \sum_{V \text{ a polynomial irrep}} \chi_V(x_1, \ldots, x_n)\chi_V(y_1, \ldots, y_n).$$

3. **Finishing the proof**

We would like to deduce that the χ_V are the Schur functions. There are two ways to finish the proof from here, both slightly more awkward than I would like.
Method 1. From a homework problem, \(\chi_V(x_1, \ldots, x_n) \) is a homogenous polynomial. As we noted in the previous class, we already know that the number of polynomial irreps of degree \(d \) is equal to the number of partitions of \(d \). By a lemma proved way back on September 12, this means that the \(\chi_V \) are self dual. Also, \(\chi_V \) is in \(\Lambda \) by the previous class. By another lemma from September 12, a self dual basis of \(\Lambda \) must be \(\pm s_\lambda \). It is clear that \(\chi_V \) has nonnegative coefficients, so the plus sign is correct. □

Method 2. We don’t really need to know that the number of degree \(d \) polynomial irreps is \(p(d) \). Indeed, if \(f_i \) is any family of symmetric polynomials with integer coefficients obeying \(\prod 1/(1 - x_i y_j) = \sum f_i(x) f_i(y) \), then I claim that the list of \(f_i \) contains each \(\pm s_\lambda \) exactly once, plus possibly some occurrences of the 0 function. Proof sketch: Let \(f_i = \sum a_i s_\lambda \). Comparing coefficients of \(s_\lambda(x) s_\lambda(y) \), we see that \(\sum_i a_i^2 = 1 \). So, for fixed \(\lambda \), exactly one \(a_{i,\lambda} \) is \(\pm 1 \) and the rest are zero. Comparing coefficients of \(s_\lambda(x) s_\mu(y) \), we see that, for fixed \(i \), at most one \(a_{i,\lambda} \) is nonzero. So the \(\chi_V \) are \(\pm \) the \(s_\lambda \), and maybe some zero functions. But it is clear that the \(\chi_V \) are nonzero and have nonnegative coefficients, so again we win. □

4. Concluding Comments

- If we look at the coordinate ring of \(GL_n \), namely \(\mathbb{C}[z_{ij}][\text{det}^{-1}] \), we get \(\bigoplus V^\vee \otimes V \) where the sum is over rational representations.
- The characters of the rational irreps are of the form

\[
(x_1 x_2 \ldots x_n)^{-N} s_\lambda(x_1, \ldots, x_n).
\]

Proof: Just tensor with a high power of the determinant representation to make it into a polynomial representation. We have

\[
s_{(\lambda_1+1, \lambda_2+1, \ldots, \lambda_n+1)}(x_1, x_2, \ldots, x_n) = (x_1 x_2 \ldots x_n) s_{\lambda_1, \lambda_2, \ldots, \lambda_n}(x_1, x_2, \ldots, x_n).
\]

As a result, the same symmetric Laurent polynomial can be expressed using more than one pair \((\lambda, N)\) as above. A nonredundant indexing set is the set of integer sequences \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \), where we do \textbf{not} impose that \(\mu_n \geq 0 \). The correspondence is that \(\mu_i = \lambda_i - N \).

- It follows immediately from the above that \(\langle \chi_V, \chi_W \rangle = \dim \text{Hom}_G(V, W) \), since the Schurs are orthonormal.
- We can look at \(\mathbb{C}[z_{ij}] \) where \(1 \leq i \leq m \) and \(1 \leq j \leq n \) as a \(GL_m \times GL_n \) rep. We have the equality of generating functions

\[
\prod_{i=1}^m \prod_{j=1}^n \frac{1}{1 - x_i y_j} = \sum_{\lambda} s_\lambda(x_1, \ldots, x_m) s_\lambda(y_1, \ldots, y_n).
\]

(Just take the identity in infinitely many variables and stick in 0 for the appropriate \(x \) and \(y \) variables.) So

\[
\mathbb{C}[z_{ij}] \cong \bigoplus_{\lambda} V_{\lambda}(m) \otimes V_{\lambda}(n)
\]

where \(V_{\lambda}(m) \) is the representation of \(GL_m \) with character \(s_\lambda(x_1, \ldots, x_m) \). The summands with \(\ell(\lambda) > \min(m,n) \) are zero, so we can equivalently write

\[
\mathbb{C}[z_{ij}] \cong \bigoplus_{\ell(\lambda) < \min(m,n)} V_{\lambda}(m) \otimes V_{\lambda}(n).
\]