NOTES FOR OCTOBER 17, 2012

CHARLOTTE CHAN

We spent some time discussing Problem 5d on Problem Set 5. The analogous finite group statement is the following:

Let \(V \) be a faithful \(G \)-representation. Set \(W = V \oplus V^\vee \oplus \mathbb{C} \). Then every irreducible representation \(U \) occurs in \(W^\otimes N \) for \(N \gg 0 \).

1. Some comments from last time

\[\mathbb{C}[x_{ij}] = \bigoplus V^\vee \otimes V, \]

where \(V \) varies over polynomial irreducible representations of \(\text{GL}_n \) and the equality above is taken as \((\text{GL}_n \times \text{GL}_n) \)-representations. We want to point out that we similarly have:

\[\mathbb{C}[z_{ij}] = 1 \leq i \leq m, \ 1 \leq j < n = \bigoplus_{\lambda, \ell(\lambda) \leq \min(m,n)} V^\vee_\lambda (m) \otimes V_\lambda (n) \]

as \((\text{GL}_n \times \text{GL}_n) \)-representations.

Proof. We have

\[\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{1 - x_i y_j} = \sum_{\lambda} S_\lambda(x_1, \ldots, x_m) S_\lambda(y_1, \ldots, y_n). \]

Note that \(S_\lambda(x_1, \ldots, x_m) = 0 \) if \(\ell(\lambda) > m \) and \(S_\lambda(y_1, \ldots, y_n) = 0 \) if \(\ell(\lambda) > n \). The result follows. \(\square \)

Last time that we showed that we have a bijective correspondence between polynomial \(\text{GL}_n \) representations and partitions \(\lambda \) with \(\ell(\lambda) \leq n \); and the character of \(V_\lambda \) is \(s_\lambda \). We want to point out that this implies:

\[\dim \text{Hom}_{\text{GL}_n}(V, W) = \langle \chi_V, \chi_W \rangle. \]

(Consider \(\chi_V \) and \(\chi_W \) as polynomials in \(\Lambda \) using the combinatorially defined inner product on \(\Lambda \).) Note that if \(|\lambda| > n \), the we use the standard inclusion \(\Lambda_n \hookrightarrow \Lambda \).

Notation. \(V_\lambda \) or \(V_\lambda (n) \) is the \(\text{GL}_n \)-representation with character \(S_\lambda(x_1, \ldots, x_n) \).

2. How we will construct \(V_\lambda \)

Recall that

\[h_\lambda = s_\lambda + \sum_{\mu \prec \lambda} \kappa_{\lambda \mu} s_\mu, \]

\[e_\lambda^T = s_\lambda + \sum_{\mu \succ \lambda} \kappa_{\lambda T \mu}^T s_\mu. \]

So the equality

\[\langle h_\lambda, e_\lambda^T \rangle = 1 \]

comes from the \(s_\lambda \) term.

Let

\[H = \bigotimes_k \text{Sym}_{\lambda_k}^n V, \]

\[E = \bigotimes_k \Lambda_{\lambda_k^T}^n V. \]
So $\chi_H = h_\lambda$ and $\chi_E = e^{\lambda^T}$. We see that

$$H = V_\lambda \oplus \bigoplus_{\mu < \lambda} V^{\oplus K_\lambda}_\mu,$$

$$E = V_\lambda \oplus \bigoplus_{\mu > \lambda} V^{\oplus K_\lambda^T}_\mu.$$

So $\text{Hom}_{\text{GL}(V)}(E, H) \cong \mathbb{C}$ and if φ is a $\text{GL}(V)$-equivariant homomorphism $E \to H$, then $\text{Im}(\varphi) \cong V_\lambda$. Our next goal will be to describe such a map φ explicitly.