Problem Set 10: Due Friday, December 8

See the course website for homework policy. This is the last problem set!

1. Let W be a finite Coxeter group and let V, R, S, S_+ and Δ have their usual meanings. Let $A = R/RS_+$ be the coinvariant algebra.

 (a) We define the socle of A to be $\{ a \in A : va = 0 \ \forall v \in V \}$. Show that the socle of A is one dimensional, spanned by Δ. (Hint: Let a lie in the socle, and consider $\partial_{\delta}(\beta a)$.)

 (b) For any integer i between 0 and $\ell(w_0)$, multiplication defines a bilinear map $A_i \times A_{\ell(w_0)−i} \to A_{\ell(w_0)} \cong \mathbb{R}$. Show that this is a perfect pairing.

2. Let s_1, s_2, \ldots, $s_{n−1}$ be the standard Coxeter generators of S_n. As we will discuss in class, a Coxeter element is a permutation c with a reduced word of the form $c = s_{i_1}s_{i_2}\cdots s_{i_{n−1}}$, where $(i_1, i_2, \ldots, i_{n−1})$ is a permutation of $(1, 2, \ldots, n−1)$.

 (a) Show that c is an n-cycle $(a_1a_2\cdots a_n)$ and describe how to read off $(a_1a_2\cdots a_n)$ from $(i_1, i_2, \ldots, i_{n−1})$.

 (b) Let $\vec{v} = (v_1, \ldots, v_n) \in \mathbb{C}^n$ be a nonzero $e^{2\pi i/n}$ eigenvector of c. Describe the geometry of the n points $v_1, v_2, \ldots, v_n \in \mathbb{C}$.

 (c) We focus on the particular case $c = s_1s_3s_5\cdots s_2s_4s_6\cdots$. Let $H \subset \mathbb{R}^n$ be the 2-plane of vectors of the form $(\Re(\alpha v_1), \Re(\alpha v_2), \ldots, \Re(\alpha v_n))$ for $\alpha \in \mathbb{C}$. Describe the intersection of H with the fundamental domain $D = \{(x_1, \ldots, x_n) : x_1 \geq x_2 \geq \cdots \geq x_n \}.$

3. Let Γ be a graph with n vertices. An orientation O of Γ is an assignment of a direction $i \to j$ to each edge (i, j) of Γ. A sink of (Γ, O) is a vertex i where all adjacent edges are directed into i, and a sink is a vertex where all adjacent vertices are directed out. A sink-source reversal takes a sink and reverses all edges incident to it, making a source. Given a cycle $\gamma = (v_1, v_2, \ldots, v_k)$ in Γ and an orientation O of Γ, the flow of O along Γ is

 $$\text{Flow}(\gamma, O) = \#\{i : v_i \to v_{i+1}\} − \#\{i : v_i \leftarrow v_{i+1}\}$$

where the indices are cyclic modulo k. An orientation O is called acyclic if $−k < \text{Flow}(\gamma, O) < k$ for every length k cycle γ in Γ.

The aim of this problem is to prove the following result: If O_1 and O_2 are two acyclic orientation of Γ, and $\text{Flow}(\gamma, O_1) = \text{Flow}(\gamma, O_2)$ for all cycles γ, then we can transform O_1 to O_2 by a sequence of sink-source reversals. We write $i \to j$ for the orientation O_1 and similarly for O_2. With all that as prelude, we begin:

 (a) Prove the converse: If O_1 can be transformed into O_2 by a sequence of sink-source reversals, then $\text{Flow}(\gamma, O_1) = \text{Flow}(\gamma, O_2)$ for all cycles γ.

 We may, and do, reduce to the case that Γ is connected.

 (b) Let O_1 and O_2 be two acyclic orientation of Γ. Suppose that $\text{Flow}(\gamma, O_1) = \text{Flow}(\gamma, O_2)$ for all cycles γ. Show that there is a unique function h from the vertices of Γ to $\mathbb{Z}_{\geq 0}$ such that
1. For every edge \((i, j)\) of \(\Gamma\),

\[
 h(i) - h(j) = \begin{cases}
 1 & \text{if } i \leftarrow 1 j \text{ and } i \rightarrow 2 j \\
 0 & \text{if } (i \rightarrow 1 j \text{ and } i \rightarrow 2 j) \text{ or } (i \leftarrow 1 j \text{ and } i \leftarrow 2 j) \\
 -1 & \text{if } i \rightarrow 1 j \text{ and } i \leftarrow 2 j
 \end{cases}
\]

2. For every vertex \(v\) of \(\Gamma\), we have \(h(v) \geq 0\) and, for at least one vertex, we have \(h(v) = 0\).

We define \(d(\mathcal{O}_1, \mathcal{O}_2) = \sum_{v \in \Gamma} h(v)\). Our proof is by induction on \(d\).

(c) Explain why the base case, \(d(\mathcal{O}_1, \mathcal{O}_2) = 0\), holds.

(d) Let \(d > 0\) and set \(H = \max_v h(v)\). Show that there is some \(v_0\) with \(h(v) = H\) which is a sink of \(\mathcal{O}_1\).

(e) Let \(\mathcal{O}_1'\) be the orientation obtained from \(\mathcal{O}_1\) by a sink-source reversal at \(v_0\). Show that

\[
 d(\mathcal{O}_1', \mathcal{O}_2) = d(\mathcal{O}_1, \mathcal{O}_2) - 1.
\]