See the course website for homework policy.

1. Let V be a finite dimensional real vector space equipped with a positive definite symmetric bilinear form \cdot. Let Λ be a discrete additive subgroup of V with $\text{Span}_R(\Lambda) = V$. Define G to be the group of linear transformations $g : V \to V$ with $g(u) \cdot g(v) = u \cdot v$ and $g(\Lambda) = \Lambda$.

 (a) Show that G is finite.
 (b) Show that, for $g \in G$, we have $\text{Tr} \, g \in \mathbb{Z}$.
 (c) Let $\dim V = 2$ and let $g \in G$. Show that g has order 1, 2, 3, 4 or 6.

2. This problem will explore a representation where the α_i and α_i^\vee are not linearly independent. V and V^\vee be 3 dimensional, written as column and row vectors respectfully, and take

\[
\begin{align*}
\alpha_1 &= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, & \alpha_2 &= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, & \alpha_3 &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, & \alpha_4 &= \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \\
\alpha_1^\vee &= \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}, & \alpha_2^\vee &= \begin{bmatrix} -2 & 0 & 0 \end{bmatrix}, & \alpha_3^\vee &= \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}, & \alpha_4^\vee &= \begin{bmatrix} 0 & -2 & 0 \end{bmatrix}.
\end{align*}
\]

We define $D = \{ x \in V^\vee : \langle x, \alpha_i \rangle \geq 0 \}$. Recall that s_i acts on V^\vee by

\[
s_i(x) = x - \langle x, \alpha_i \rangle \alpha_i^\vee.
\]

(a) Show that the matrix $A_{ij} = \langle \alpha_i^\vee, \alpha_j \rangle$ is a Cartan matrix. What are the m_{ij}?

(b) Let V_1^\vee be the affine linear space $\{ \begin{bmatrix} x \\ y \end{bmatrix} \}$ in V_1^\vee. Show that W preserves V_1^\vee.

(c) In terms of the coordinates (x, y) on V_1^\vee, write down the action of the s_i on V_1^\vee. Give inequalities on x and y describing $D_1 := D \cap V_1^\vee$.

(d) Draw and label the domains wD_1 in the two dimensional plane V_1^\vee for several values of w.

3. This problem describes a different representation of \tilde{A}_{n-1} from the one on Problem Set 2.

Let $n \geq 3$ be a positive integer. Let V be the vector space of sequences $(a_i)_{i \in \mathbb{Z}}$ such that

\[
a_{i+n} - a_i \text{ is a constant independent of } i.
\]

Let \tilde{A}_{n-1} act on V by $w(a)_i = a_{w^{-1}(i)}$.

(a) Choose a basis for V, and write the matrices of s_1, s_2, \ldots, s_n in your basis.

(b) Give explicit vectors $\alpha_i \in V$ and $\alpha_i^\vee \in V^\vee$ such that $s_i(x) = x - \langle \alpha_i^\vee, \alpha_i \rangle \alpha_i$. Choose your signs such that $\langle \alpha_i^\vee, \alpha_i \rangle$ is positive on the point $x_i = i$.

(c) Compute the Cartan matrix $A_{ij} = \langle \alpha_i^\vee, \alpha_j \rangle$.

Once again, let $D = \{ x \in V^\vee : \langle x, \alpha_i \rangle \geq 0, \ 1 \leq i \leq n \}$.

Let \bar{V} be the quotient of V by the vector space of constant sequences. Let \bar{V}_1 be the affine subspace $a_{i+n} = a_i + 1$ of \bar{V}. Note that $\dim \bar{V}_1 = n - 1$, which means we can draw it for $n = 3$. I’ll write \bar{D} for the image of D in \bar{V} and \bar{D}_1 for the intersection $\bar{D} \cap \bar{V}_1$.

(d) For $n = 3$, draw \bar{D}_1, $s_1\bar{D}_1$, $s_2\bar{D}_1$, $s_3\bar{D}_1$, $s_3s_2s_1\bar{D}_1$, $s_1s_2s_1\bar{D}_1$ inside \bar{V}_1. Draw the hyperplanes fixed by s_1, s_2, s_3.

(e) Show that $\bar{V}_1 = \bigcup_{w \in \tilde{A}_{3-1}} w\bar{D}_1$.