Problem Set 6: Due Friday, October 27

See the course website for homework policy.

Note: Because I expect the course to be providing an overview of Lie groups at this point, the problems are not closely tied to the current material. They are either things that I think it would be nice for you to know, or things which will be useful when we start studying invariant theory.

1. Let Φ be a finite root system with simple roots $\alpha_1, \alpha_2, \ldots, \alpha_n$.
 (a) Let s_i be a simple generator and β a positive root other than α_i. Show that $s_i\beta$ is a positive root. (Hint: Quote an earlier problem.)
 Define $\rho = \frac{1}{2} \sum_{\beta \in \Phi^+} \beta$.
 (b) Show that $\langle \alpha_i^\vee, \rho \rangle = 1$ for $1 \leq i \leq n$.
 (c) Take our usual models of the finite classical crystallographic root systems: \{\pm $e_i - e_j$\} in type A, \{\pm $e_i \pm e_j$, e_k\} in type B, \{\pm $e_i \pm e_j$, $2e_k$\} in type C and \{\pm $e_i \pm e_j$\} in type D and compute ρ in these cases.
 For a reflection $t \in T$, let β_t be the positive root with $t\beta_t = -\beta_t$.
 (d) For any $w \in W$, show that $w(\rho) = \rho - \sum_{t \in \text{inv}(w)} \beta_t$.

2. This problem describes a model for the group \tilde{C}_n similar to our model for \tilde{A}_{n-1} in terms of affine permutations. We define \tilde{C}_n by its Coxeter diagram:

 \[
 \begin{array}{cccccccc}
 s_0 & 4 & s_1 & \cdots & s_{n-1} & 4 & s_n \\
 \end{array}
 \]

 Let $Z = \{k + 1/2 : k \in \mathbb{Z}\}$. Let \tilde{S}^C_n be the set of bijections $w : Z \to Z$ such that

 \[w(z + 2n) = w(z) + 2n \text{ and } w(-z) = -w(z).\]

 Our goal will be to show $\tilde{S}^C_n \cong \tilde{C}_n$.
 (a) Describe a map $\tilde{C}_n \to \tilde{S}^C_n$ by describing where to send the generators s_0, s_1, \ldots, s_n.
 Let V^\vee be the vector space of functions $a : Z \to \mathbb{R}$ obeying $a(-z) = -a(z)$ and such that $a(z + 2n) - a(z)$ is a constant independent of z.
 (b) Choose a basis for V^\vee and write down the action of s_0, \ldots, s_n in that basis. Write $s_i(x)$ in the form $x - \langle \alpha_i, x \rangle \alpha_i^\vee$ for some roots α_i and α_i^\vee.
 (c) Check that the α_i and α_i^\vee pair by the Cartan matrix for \tilde{C}_n.
 (d) Show that $\tilde{C}_n \to \tilde{S}^C_n$ is an isomorphism.
3. Let W be a Coxeter group with generators s_1, s_2, \ldots, s_n. For $I \subseteq [n]$, we defined W_I to be the subgroup generated by $\{s_i : i \in I\}$. We define $^I W$ and W^I by

$$^I W = \{ w \in W : s_i \text{ is a left ascent of } w \text{ for all } i \in I \}$$

$$W^I = \{ w \in W : s_i \text{ is a right ascent of } w \text{ for all } i \in I \}.$$

(a) Show that each $w \in W$ can be factored as uv, with $u \in W_I$ and $v \in ^I W$.

(b) Show that we have $v \in ^I W$ if and only if $\text{inv}(v) \cap W_I = \emptyset$.

(c) Suppose that $w = uv$ with $u \in W_I$ and $v \in ^I W$. Show that $\text{inv}(u) = \text{inv}(w) \cap W_I$.

(d) Let $w \in W$. Show that there is a unique factorization of w as $w = uv$ with $u \in W_I$ and $v \in ^I W$. The unique u and v are denoted w_I and $^I w$. We define $^I w$ and w^I similarly.

(e) The next two pages of this problem set feature the hyperplane arrangement A_3 (drawn in stereographic projection) with regions D, $s_1 D$, $s_2 D$, $s_3 D$ labeled. Set $I = \{1, 3\}$.

On the first page, use four colors to indicate which w's have w_I equal to 1, s_1, s_3 or $s_1 s_3$. On the second page, outline the cosets uW_I and color according to the value of $^I w$.
