Let λ, μ be partitions such that $\lambda \supset \mu$, that is $\lambda_i \geq \mu_i$ for all i. The skew Young diagram λ/μ is the set difference between the two partitions.

Example 1. Let $\lambda = 6322$ and $\mu = 411$.

![Young diagrams](image)

Then λ/μ is a skew Young diagram.

A (skew) semi-standard Young tableau (SSYT) of shape λ/μ is a filling of the Young diagram λ/μ with positive integers such that the rows are weakly increasing and the columns are strictly increasing.

Example 2. A semi-standard Young tableau of shape λ/μ.

![Young tableau](image)

The skew Schur function $s_{\lambda/\mu}$ is defined

$$s_{\lambda/\mu} = \sum_{SSYT \, T \, \text{shape} (T) = \lambda/\mu} x^T.$$

Proposition 1. Skew Schur functions are symmetric.

Proof. Same as that for Schur functions (via the Bender-Knuth involution). □

We now examine skew Schur functions with respect to various bases of Λ.

In the monomial basis, the skew Schur function is

$$s_{\lambda/\mu} = \sum_{\nu} K_{\lambda/\mu, \nu} m_{\nu}$$

where the coefficient $K_{\lambda/\mu, \nu}$ is the (skew) Kostka number. It equals the number of SSYT of shape λ/μ and content ν.

Since ordinary Schur’s already span Λ, the skew Schur’s are linear combinations of these. The coefficients of this linear combination, as will be discussed below, are called Littlewood-Richardson numbers.

For the homogeneous basis, we have an analogue of the Jacobi-Trudi identity.

Proposition 2 (Jacobi-Trudi).

$$s_{\lambda/\mu} = \det (h_{\lambda_i - \mu_j - i + j})$$

Proof. Same as that for Schur functions (non-intersecting lattice paths). □
Example 3.

\[s_{32/1} = \begin{array}{|c|c|} \hline & \vrule \end{array} \]
\[s_{32/1} = \begin{vmatrix} h_2 & h_4 \\ h_0 & h_2 \end{vmatrix} = h_{22} - h_4 \]

Also, we have \(\omega(s_{\lambda/\mu}) = s_{\lambda^T/\mu^T} \) and dual Jacobi-Trudi.

Any product of skew Schur functions is also a skew Schur function, as we can put two skew shapes together (disconnected-ly) to make a new skew shape for the product. In particular, any complete homogeneous polynomial \(h_{\lambda} \) is a skew Schur function. This is because

\[h_{\lambda} = s_{(\lambda)} \]

where \((\lambda) \) is a row of \(\lambda \) boxes. Then (for example) \(h_{422} = s_{(4)}s_{(2)}s_{(2)} \) is the skew Schur function for the shape

\[\begin{array}{|c|c|c|} \hline & & \\
& & \\
& & \\
\end{array} \]

which has disconnected rows of length \(\lambda_1, \ldots, \lambda_\ell(\lambda) \).

There is also a relation between skew Schur and non-skew Schur functions.

Proposition 3. The “skew by \(\mu \)” operator that sends \(s_{\lambda} \mapsto s_{\lambda/\mu} \) is adjoint to multiplication by \(s_{\mu} \).

In other words, for any \(f \in \Lambda \)

\[\langle s_{\lambda/\mu}, f \rangle = \langle s_{\lambda}, f s_{\mu} \rangle. \]

In particular, for a Schur function \(s_{\nu} \)

\[\langle s_{\lambda/\mu}, s_{\nu} \rangle = \langle s_{\lambda}, s_{\mu}s_{\nu} \rangle. \]

Then the decomposition of \(s_{\lambda/\mu} \) into a sum of non-skew Schur functions \(s_{\nu} \) has structure constants that are the constants that you get from multiplying non-skew Schur functions.

Example 4. For the skew shape 321/21

we can compute \(s_{321/21} \). Because \(s_{321/21} \) is the product of the skew Schurs of its disconnected components

\[s_{321/21} = (s_1)^3 = (s_2 + s_1) s_1 = (s_3 + s_21) = (s_21 + s_{111}) = s_3 + 2s_{21} + s_{111} \]

We can check that the coefficient of \(s_3 \) in \(s_{321/21} \) (expanded in the \(s \)-basis) is

\[\langle s_{321/21}, s_3 \rangle = \langle s_{321}, s_3 s_{21} \rangle = 1 \]

because

\[s_3 s_{21} = s_{321} + s_{411} + s_{42} + s_{51} \]

which has \(s_{321} \) with coefficient 1.

Recall the Pieri rule, which we use for some computations in the above. A horizontal \(k \)-strip is a skew shape with \(k \) boxes and no more than one box in each column. The Pieri rule is

\[s_{\mu} h_k = \sum_{\lambda} s_{\lambda} \]

where the sum ranges over all partitions \(\lambda \) such that \(\lambda/\mu \) is a horizontal \(k \)-strip.

Proof. (of Proposition 3, adjointness) It suffices to prove this for the \(f \) from some basis for \(\Lambda \), so we will show it for \(f = h_{\nu} \). We wish to show that \(\langle s_{\lambda/\mu}, h_{\nu} \rangle = \langle s_{\lambda}, s_{\mu} h_{\nu} \rangle \).

On the LHS, we have

\[\langle s_{\lambda/\mu}, h_{\nu} \rangle = \text{coefficient of} \ m_{\nu} \text{ if } s_{\lambda/\mu} \text{ is written in the } m \text{-basis} \]

\[= K_{\lambda/\mu, \nu} \] (that is, the number of SSYT of shape \(\lambda/\mu \), content \(\nu \)).
On the RHS
\[\langle s_\lambda, s_\mu h_\nu \rangle = \text{coefficient of } s_\lambda \text{ in } s_\mu h_\nu. \]

Use the Pieri rule to turn \(s_\mu h_\nu \) into a sum.

\[
s_\mu h_\nu = s_\mu h_{\nu_1} h_{\nu_2} \cdots h_{\nu_k}
\]
\[
= \sum_{\rho(1)} s_{\rho(1)} h_{\nu_2} \cdots h_{\nu_k} \quad \left\{ \begin{array}{l}
\rho(1) \text{ s.t. } \rho(1)/\mu \text{ is a horizontal } \nu_1\text{-strip}
\end{array} \right.
\]
\[
= \sum_{\rho(1),\rho(2)} s_{\rho(2)} h_{\nu_3} \cdots h_{\nu_k} \quad \left\{ \begin{array}{l}
\rho(1) \text{ s.t. } \rho(1)/\mu \text{ is a horizontal } \nu_1\text{-strip}
\rho(2) \text{ s.t. } \rho(2)/\rho(1) \text{ is a horizontal } \nu_2\text{-strip}
\end{array} \right.
\]
\[
= \sum_{\rho(1),\rho(2),\ldots,\rho(k)} s_{\rho(k)} \quad \left\{ \begin{array}{l}
\rho(1) \text{ s.t. } \rho(1)/\mu \text{ is a horizontal } \nu_1\text{-strip}
\vdots
\rho(k) \text{ s.t. } \rho(k)/\rho(k-1) \text{ is a horizontal } \nu_k\text{-strip}
\end{array} \right.
\]

Each term \(s_{\rho(k)} \) in the sum represents a SSYT with shape \(\rho(k)/\mu \) and content \(\nu \); in the SSYT, each cell of the \(i \)th horizontal strip contains \(i \). That is,

\[
s_\mu h_\nu = \sum_{\text{SSYT}} s_{\rho(\text{shape}(T)=\rho/\mu,\text{content}(T)=\nu)}
\]

The coefficient of \(s_\lambda \) in \(s_\mu h_\nu \) is the number of SSYT with shape \(\lambda/\mu \) and content \(\nu \), i.e. \(K_{\lambda/\mu,\nu} \), and

\[
\langle s_\lambda, h_\nu \rangle = \langle s_\lambda, s_\mu h_\nu \rangle
\]
as desired. \(\square \)

Example 5. If \(\mu = (k) \), then

\[
\langle s_{\lambda/(k)}, s_\nu \rangle = \langle s_\lambda, s_\nu s_{(k)} \rangle = \left\{ \begin{array}{ll}
1 & \text{if } \lambda/\nu \text{ is a horizontal } k\text{-strip} \\
0 & \text{otherwise}
\end{array} \right.
\]

and

\[
s_{\lambda/(k)} = \sum_{\lambda/\nu \text{ is a horizontal } k\text{-strip}} s_\nu.
\]

With some actual numbers,

\[
53/2 = \begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
s_{53/2} = s_{33} + s_{42} + s_{51}.
\]

The coefficients \(\langle s_\lambda/\mu, s_\nu \rangle = \langle s_\lambda, s_\mu s_\nu \rangle = c_{\lambda/\mu}^\nu \) are called **Littlewood-Richardson coefficients**. One can also define \(s_{\lambda/\mu} \) with the following relation.

\[
s_\lambda(x, y) = \sum_{\mu \subset \lambda} s_\mu(x) s_{\lambda/\mu}(y)
\]

This is basically the same as the definition by summing over skew SSYT. Take a SSYT of shape \(\lambda \) and consider the positions of the entries indexing \(x \) variables. These form some SSYT of some shape \(\mu \); the remaining \(y \)-variables form an SSYT of shape \(\lambda/\mu \).

We reprove the adjointness relation from this perspective.
Proof.

\[
\prod_{i,j}(1 - x_i z_j)^{-1} \times \prod_{i,j}(1 - y_i z_j)^{-1} = \sum_\lambda s_\lambda(x, y)s_\lambda(z) \\
= \sum_{\lambda, \mu} s_\mu(x)s_{\lambda/\mu}(y)s_\lambda(z) \\
= \sum_{\lambda, \mu, \nu} s_\mu(x)s_\nu(y)s_\lambda(z) \langle s_{\lambda/\mu}, s_\nu \rangle
\]

and

\[
\prod_{i,j}(1 - x_i z_j)^{-1} \times \prod_{i,j}(1 - y_i z_j)^{-1} = \left(\sum_\mu s_\mu(x)s_\mu(z)\right) \left(\sum_\nu s_\nu(y)s_\nu(z)\right) \\
= \sum_{\mu, \nu} s_\mu(x)s_\nu(y)s_\mu(z)s_\nu(z) \\
= \sum_{\lambda, \mu, \nu} s_\mu(x)s_\nu(y)s_\lambda(z) \langle s_\lambda, s_\mu s_\nu \rangle
\]

so \(\langle s_{\lambda/\mu}, s_\nu \rangle = \langle s_\lambda, s_\mu s_\nu \rangle \). □