The aim of this note is to prove the following result:

Theorem 1. Let z1(t), xo(t), ..., z,(t) be smooth positive real valued functions. Let ey be
the k-th elementary symmetric function in the x;’s. Suppose that %ek(xl(t), o xy(t) >0
for 1 <k <n—1and e,(21(t),...,x,(t)) is constant. Then 5 > (logz;(t))? is positive.

We begin with some computations whose connection to the previous problem will not be
immediately clear.

Lemma 2. Let x1, xo, ..., x, be distinct positive real numbers. Define

"

h(r) = =
Z Ha;éz’ (xl - x(l)

Then h(r) has simple zeroes at 0, 1, ..., n —2 and no other zeroes. We have h(r) > 0 for
sufficiently positive r.

%

Proof. Since h(r) is a linear combination of n functions of the form c- 2", by Descartes’ rule
of signs for real exponents, h has at most n — 1 roots counted with multiplicity. So it is
enough to show that h(k) = 0 for k = 0, 1, ..., n — 2. For any integer j, we note that
h(k) is a rational function in x1, xs, ..., z,. This rational function is homogenous of degree
k —n + 1. But we also note that, for £ > 0, this rational function is a polynomial. The
only possible poles of h are along z; — x;, but h does not blow up along these hyperplanes.
So, for k an integer between 0 and n — 2, the function h(xy,...,x,) is a rational function of
negative degree, and hence zero.

Finally, we must confirm the sign of h for large r. Without loss of generality, let 1 > xs,
x3, ..., Ty. For r large, the 2] term dominates all others, and it has positive sign. ([l

Remark 3. For any integer k, the function h(k) is the complete homogenous symmetric
polynomial of degree k —n + 1.

Corollary 4. For distinct positive real numbers x1, x9, ..., x, and k=0,1, ..., n—2, we
have
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p Ha;éi(xi — Z4)

Proof. The sum is h/(k). Since we know the sign of h on each of (—o0,0), (0,1), ...,

> 0.

(n—3,n—2), (n—2,00), we know the sign of i’ at the boundary points. O
Next, we perform some computations with matrices of symmetric functions:
Lemma 5. Let xy, ..., x, be distinct positive reals. Let J be the Jacobian matriz J;; =
dej/0x;. Set u; =[], (xi —x4). Then
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J =
(=1)" P2y (=) Pay o ()" Pap (1), Unly

(_1)7171 (_1)1171 . (_1)1171 (_1)7171 u;l

Proof. Note that Oe;/0x; is e;_1(x1,xa,...,Tj,...,Tys), so these are the entries of J.

Let V be the first matrix on the right hand side and let U be the diagonal matrix. We
want to prove J! = VU or, equivalently, U='V~! = J. The matrix V is known as the



Vandermonde matrix, and the formula for the inverse of the Vandermonde matrix is well
known. Manipulating that formula, and the description of the entries of J above, the result

follows. U
Define f(z1,...,7,) = > (log ;).

Lemma 6. For any distinct positive reals x1, ..., x,, we can write the vector Vf as a linear

combination Y, c¢;Ve;. Moreover, the coefficients ¢y, ca, ..., cp1 are positive.

Proof. The vectors Ve; are the columns of J. Lemma 5] gives an inverse to J, so some such
scalars ¢; exist, and they are the entries of the vector —J 'V f. Plugging in the formula
from the lemma, we obtain
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cj = (—1)j—1zi:zu_iaxi J 12 Ha#l Ty — :L‘l)

When j=1,2,...,n—1, we have n —j — 1 =0, 1,...,n—2. By Corollary [4] the sum on

the right has sign (—1)"~2=("=7= = (=1)771 50 ¢; > 0. O
Now, suppose we have real functions z1(t), za(t), ..., 2,(t) as in Theorem [I] Set v =
(Ox1/0t, 0xo/0t, ..., 0x,/0t). Then the dot products (Vey) -7, (Ves) - v, ..., (Ven_1) -7

are all positive and (Ve,) -y = 0. It follows from Lemma [f] that (Vf) -y > 0, as desired.



