
The aim of this note is to prove the following result:

Theorem 1. Let x1(t), x2(t), . . . , xn(t) be smooth positive real valued functions. Let ek be
the k-th elementary symmetric function in the xi’s. Suppose that d

dt
ek(x1(t), . . . , xn(t)) > 0

for 1 ≤ k ≤ n− 1 and en(x1(t), . . . , xn(t)) is constant. Then d
dt

∑
(log xi(t))

2 is positive.

We begin with some computations whose connection to the previous problem will not be
immediately clear.

Lemma 2. Let x1, x2, . . . , xn be distinct positive real numbers. Define

h(r) =
∑
i

xri∏
a6=i(xi − xa)

.

Then h(r) has simple zeroes at 0, 1, . . . , n − 2 and no other zeroes. We have h(r) > 0 for
sufficiently positive r.

Proof. Since h(r) is a linear combination of n functions of the form c · xr, by Descartes’ rule
of signs for real exponents, h has at most n − 1 roots counted with multiplicity. So it is
enough to show that h(k) = 0 for k = 0, 1, . . . , n − 2. For any integer j, we note that
h(k) is a rational function in x1, x2, . . . , xn. This rational function is homogenous of degree
k − n + 1. But we also note that, for k ≥ 0, this rational function is a polynomial. The
only possible poles of h are along xi − xj, but h does not blow up along these hyperplanes.
So, for k an integer between 0 and n− 2, the function h(x1, . . . , xn) is a rational function of
negative degree, and hence zero.

Finally, we must confirm the sign of h for large r. Without loss of generality, let x1 > x2,
x3, . . . , xn. For r large, the xr1 term dominates all others, and it has positive sign. �

Remark 3. For any integer k, the function h(k) is the complete homogenous symmetric
polynomial of degree k − n+ 1.

Corollary 4. For distinct positive real numbers x1, x2, . . . , xn and k = 0, 1, . . . , n− 2, we
have

(−1)n−2−k
∑
i

xki log xi∏
a6=i(xi − xa)

> 0.

Proof. The sum is h′(k). Since we know the sign of h on each of (−∞, 0), (0, 1), . . . ,
(n− 3, n− 2), (n− 2,∞), we know the sign of h′ at the boundary points. �

Next, we perform some computations with matrices of symmetric functions:

Lemma 5. Let x1, . . . , xn be distinct positive reals. Let J be the Jacobian matrix Jij =
∂ej/∂xi. Set ui =

∏
a6=i(xi − xa). Then

J−1 =


xn−11 xn−12 · · · xn−1n−1 xn−1n

−xn−21 −xn−22 · · · −xn−2n−1 −xn−2n
. . .

(−1)n−2x1 (−1)n−2x2 · · · (−1)n−2xn−1 (−1)n−2xn
(−1)n−1 (−1)n−1 · · · (−1)n−1 (−1)n−1



u−11

u−12
. . .

u−1n−1
u−1n


Proof. Note that ∂ei/∂xj is ei−1(x1, x2, . . . , x̂j, . . . , xn), so these are the entries of J .

Let V be the first matrix on the right hand side and let U be the diagonal matrix. We
want to prove J−1 = V U or, equivalently, U−1V −1 = J . The matrix V is known as the



Vandermonde matrix, and the formula for the inverse of the Vandermonde matrix is well
known. Manipulating that formula, and the description of the entries of J above, the result
follows. �

Define f(x1, . . . , xn) =
∑

(log xi)
2.

Lemma 6. For any distinct positive reals x1, . . . , xn, we can write the vector ∇f as a linear
combination

∑
cj∇ej. Moreover, the coefficients c1, c2, . . . , cn−1 are positive.

Proof. The vectors ∇ej are the columns of J . Lemma 5 gives an inverse to J , so some such
scalars cj exist, and they are the entries of the vector −J−1∇f . Plugging in the formula
from the lemma, we obtain

cj = (−1)j−1
∑
i

xn−ji

ui

∂f

∂xi
= (−1)j−1

∑
i

2xn−j−1i log xi∏
a6=i(xa − xi)

.

When j = 1, 2, . . . , n− 1, we have n− j − 1 = 0, 1, . . . , n− 2. By Corollary 4, the sum on
the right has sign (−1)n−2−(n−j−1) = (−1)j−1, so cj > 0. �

Now, suppose we have real functions x1(t), x2(t), . . . , xn(t) as in Theorem 1. Set γ =
(∂x1/∂t, ∂x2/∂t, . . . , ∂xn/∂t). Then the dot products (∇e1) · γ, (∇e2) · γ , . . . , (∇en−1) · γ
are all positive and (∇en) · γ = 0. It follows from Lemma 6 that (∇f) · γ > 0, as desired.


