PAYNE’S THEOREM AND COEFFICIENTS OF RATIONAL POWER SERIES

DAVID E SPEYER

Let \(P \) be the set \(\{ p : p \text{ is prime} \} \cup \{ \infty \} \). For \(p \in P \), let \(|\cdot|_p \) be the \(p \)-adic absolute value on \(\mathbb{Q} \). Let \(\mathbb{C}_\infty \) be the complex numbers; for \(p \) a finite prime, let \(\mathbb{C}_p \) be the completion of the algebraic closure of \(\mathbb{Q}_p \).

Let \(f \) and \(g \in \mathbb{Q}[t_1, t_2, \ldots, t_n] \) be relatively prime polynomials with \(g(0, 0, \ldots, 0) \neq 0 \). Let

\[
 f(t_1, t_2, \ldots, t_n) = \sum_{(d_1, d_2, \ldots, d_n) \in \mathbb{N}_0^n} a(d_1, d_2, \ldots, d_n) t_1^{d_1} t_2^{d_2} \cdots t_n^{d_n}.
\]

So \(a(d_1, \ldots, d_n) \) is a rational number.

Let \(\phi : \mathbb{Z}_p^d \to \mathbb{Q} \) be a function. We define \(\phi \) to be a \textit{quasi-polynomial} if we can partition \(\mathbb{N}^d_0 \) into finitely many sets \(S_1 \cup S_2 \cup \cdots \cup S_r = \mathbb{Z}^d_0 \) where

1. Each \(S_i \) is of the form

\[
 \left\{ d \in \mathbb{Z}_0^d : \langle d, u \rangle \geq 0 \right\}
\]

where \(u^1, \ldots, u^K \) and \(e_1, \ldots, e_L \) are sequences of integer vectors and \(N_j \) is a sequence of positive integers.

2. The restriction of \(\phi \) to each \(S_k \) is a polynomial.

The point of this note is to prove the following theorem. Our key tool is a result of Sam Payne, which in turn depends on a deep Diophantine theorem of Zhang.

\textbf{Theorem.} With notation as above, the following are equivalent:

1. The polynomial \(g \) factors as \(\prod \Phi_{d_i}(t_1^{e_1} \cdots t_n^{e_n}) \) where \(\Phi_d \) is the \(d \)-th cyclotomic polynomial and \((e_1, e_2, \ldots, e_n) \in \mathbb{Z}^n_0 \), with not all the \(e_i = 0 \).
2. The function \((d_1, \ldots, d_n) \mapsto a(d_1, \ldots, d_n) \) is a quasi-polynomial.
3. There are constants \(C \) and \(D \) such that

\[
 |a(d_1, \ldots, d_n)|_\infty \leq C \left(\sum d_i \right)^D
\]

and, for every finite prime \(p \), there is a constant \(C_p \) such that

\[
 |a(d_1, \ldots, d_n)|_p \leq C_p.
\]

4. For every \(p \in P \), there are no zeroes of \(g(t_1, \ldots, t_n) \) in the open polydisc \(\{(u_1, \ldots, u_n) \in \mathbb{C}_p : |u_1|, |u_2|, \ldots, |u_n| < 1\} \).

\textbf{Remark:} It is easy to generalize this result to number fields \(K \) other than \(\mathbb{Q} \). The one nonobvious point is that, instead of cyclotomic polynomials, one should use irreducible factors of \(1 - t^d \) in \(K[t] \).

\textbf{Remark:} Note that \(|\alpha|_p \) is a real number, so the inequalities in parts (3) and (4) are ordinary inequalities of real numbers.

\textbf{Remark:} When \(n = 1 \), the implication (4) \(\implies \) (1) is essentially the theorem of Kronecker: An algebraic integer all of whose Galois conjugates have norm \(\leq 1 \) is a root of unity. See [Kronecker], or see [Greiter] for a nice modern exposition.

We now prove the downward implications.

(1) \(\implies \) (2): Rewrite \(f/g \) as \(h/\prod(1-t_i^{e_i}) \), where \(h \) is some polynomial. This is the sum of finitely many rational functions whose numerator is a monomial and whose denominator is \(\prod(1-t_i^{e_i}) \). So it is enough to show that the coefficients of \(1/\prod(1-t_i^{e_i}) \) form a quasi-polynomial. This is standard.

(2) \(\implies \) (3): This is obvious.

(3) \(\implies \) (4): Let \(g_1 g_2 \cdots g_r \) be the factorization of \(g \) into irreducibles. Suppose for the sake of contradiction that \(g_i \) has a zero in \(\{ (u_1, \ldots, u_n) \in \mathbb{C}_p : |u_1|, |u_2|, \ldots, |u_n| < 1 \} \). We will write \(Z_p(g_i) \) for the zero locus of \(g_i \) in \(\mathbb{C}_p^n \), and write \(U_p \) for the open polydisc. Then \(Z_p(g_i) \cap U_p \) is Zariski dense.
in \(Z_p(g_i) \). In particular, since \(f \) and \(g \) are relatively prime, there is a point \((x_1, \ldots, x_n)\) which is in \(Z_p(g_i) \cap U_p \) but not in \(Z_p(f) \). But then \(f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n) \sum a(d_1, \ldots, d_n)x_1^{d_1} \cdots x_n^{d_n} \). We know \(g(x_1, \ldots, x_n) \) is 0 and the second factor is convergent by the hypothesis (3), so \(f(x_1, \ldots, x_n) \) is zero after all, a contradiction.

The rest of this note is taken up with proving the reverse implication. For every \(p \in P \), we define a subset \(A_p(g) \) of \(\mathbb{R}^n \) as follows: \(A_p(g) \) is the closure of the image of \(Z_p(g) \cap (\mathbb{C}_p^n) \) under the map \(a \mapsto \log(|a|_p) \). For \(p = \infty \), the image is already closed and is called the amoeba of \(g \); for \(p < \infty \) this is more commonly called the tropicalization of \(g \). The archimedean and non-archimedean communities use opposite sign conventions; we follow the non-archimedean tradition. We define \(\mathcal{A}_h(g) \) to be \(\bigcup_{p \in S} A_p(g) \), which (following Payne) we term the adelic amoeba of \(g \).

We will be using the following result of Sam Payne. This is [Payne, Proposition 4.2]; the proof relies on a Diophantine result of Zhang [Zhang], see also [BZ].

Payne’s Theorem. Let \(h \) be a polynomial in \(\mathbb{Q}[t_1, \ldots, t_n] \). Let \((v_1, \ldots, v_n) \in \mathbb{R}^n \), with not all \(v_i \) equal to 0 and suppose that \(\mathbb{R}_{>0} : v \cap \mathcal{A}_h(h) \) is empty. Then each irreducible geometric component of \(h = 0 \) is a translate of a subtorus by a torsion point.

Remark: This differs from an exact quotation of Payne’s result in two ways — Payne works over a general number field, rather than \(\mathbb{Q} \), and Payne implicitly reduces to the case that \(h \) is geometrically irreducible without saying so explicitly.

Note that, in equations, a translate of a subtorus by a torsion point looks like \(1 - \zeta t_1^{e_1} \cdots t_n^{e_n} \) where \((e_1, \ldots, e_n)\) is an integer exponent and \(\zeta \) is a root of unity.

We now conclude our proof, showing that (4) implies (1). Note that (4) can be restated as

\[
\mathcal{A}_h(g) \cap \mathbb{R}_{>0}^n = \emptyset.
\]

So, whenever \((v_1, v_2, \ldots, v_n)\) is in \(\mathbb{R}_{>0}^n \), the hypothesis of Payne’s theorem holds. So \(g(t_1, \ldots, t_n) = \prod(1 - \zeta t_1^{e_1} \cdots t_n^{e_n}) \). Since \(g \) has rational coefficients, we can group these binomials together into cyclotomic polynomials. If \((e_1, \ldots, e_n)\) do not all have the same sign, then the binomial \(1 - \zeta t_1^{e_1} \cdots t_n^{e_n} \) has roots in the open polydisc \(U_p \) (for every \(p \), in fact), contradicting our assumption (4). So all the components of \(e^j \) have the same sign and, without loss of generality, that sign is nonnegative. This concludes our proof.

The motivation for this note was the following question of Alex Fink [Fink].

Let \(A \) be a subset of \(\mathbb{Z}_{\geq 0}^{n+1} \) and suppose that \(\sum_{d \in A} t_1^{d_1} \cdots t_n^{d_n} \in \mathbb{Z}[[t_1, \ldots, t_n]] \) is a rational function. What can be said about the structure of \(A \)?

(I have taken the liberty of renaming some of Fink’s variables.)

Let \(\chi_A : \mathbb{Z}_{\geq 0}^n \to \{0, 1\} \) be the characteristic function of \(A \). The function \(\chi_A \) obeys (3), with \(C = C_p = 1 \) and \(D = 0 \). Our theorem states that \(\chi_A \) is a quasi-polynomial. Write \(\mathbb{Z}_{\geq 0}^n \) as \(S_1 \cup \cdots \cup S_r \), as in the definition of quasi-polynomials, with \(\chi_A|S_k = \chi_A \) equal to the polynomial \(\phi_k \). Since \(\phi_k \) only assumes the values 0 and 1 on \(S_k \), we see that \(\phi_k \) must be constant; equal to either 0 or 1. Let \(S_{k_1}, \ldots, S_{k_r} \) be the sets where \(\phi_k = 1 \). So \(A = \bigcup S_{k_i} \), where each \(k_i \) is given by finitely many integer inequalities and congruences.

References

