EIGENVALUES OF SYMMETRIC MATRICES, AND GRAPH THEORY

Last week we saw how to use the eigenvalues of a matrix to study the properties of a graph. If our graph is undirected, then the adjacency matrix is symmetric. There are many special properties of eigenvalues of symmetric matrices, as we will now discuss.

Let \(A \) be a symmetric matrix. Let \(\lambda \) and \(\mu \) be eigenvalues of \(A \), with corresponding eigenvectors \(u \) and \(v \). We claim that, if \(\lambda \) and \(\mu \) are distinct, then \(u \) and \(v \) are orthogonal. Proof: We have \(u^T Av = \lambda (u^T v) \). But, also, \(u^T Av = (Au)^T v = \mu u^T v \). So \(\lambda u^T v = \mu u^T v \) and we deduce that \(u^T v = 0 \).

Thus, if \(A \) has \(n \) distinct eigenvalues, with \(n \) real eigenvectors \(v_i \), then the \(v_i \)'s are orthogonal and can be normalized to be orthonormal. In fact, more is true. As you should have learned in your linear algebra class, we have

The Spectral Theorem: If \(A \) is a symmetric real matrix, then the eigenvalues of \(A \) are real and \(\mathbb{R}^n \) has an orthonormal basis of eigenvectors for \(A \).

Let \(v_1, v_2, \ldots, v_n \) be the promised orthogonal basis of eigenvectors for \(A \). Let \(S \) be the matrix which takes the standard basis vector \(e_i \) to \(v_i \); explicitly, the columns of \(S \) are the \(v_i \). As we learned before, we have \(A = S^{-1} \text{diag}(\lambda_1, \ldots, \lambda_n) S \). However, in this case, things get even better. Since the \(v_i \) are orthonormal, the matrix \(S \) is orthogonal and we have \(S^{-1} = S^T \). In other words, the rows of \(S \) are again the \(v_i \):

\[
A = \begin{pmatrix}
 v_1^T \\
v_2^T \\
 \vdots \\
v_n^T
\end{pmatrix}
\begin{pmatrix}
 \lambda_1 \\
 \lambda_2 \\
 \vdots \\
 \lambda_n
\end{pmatrix}
\begin{pmatrix}
 v_1 \\
v_2 \\
 \vdots \\
v_n
\end{pmatrix}.
\]

This result is so important that we write it in several equivalent ways:

\[
A = \sum_{i=1}^{n} \lambda_i v_i v_i^T.
\]

\[
A(u) = \sum_{i=1}^{n} \lambda_i v_i \langle v_i, u \rangle.
\]

And, most importantly for our current purposes,

\[
\langle u, Au \rangle = \sum_{i=1}^{n} \lambda_i \langle v_i, u \rangle^2 \quad (*).
\]

Write \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). From equation (*), we have the following consequences:

For any vector \(u \neq 0 \), we have

\[
\lambda_1 \geq \frac{\langle Au, u \rangle}{\langle u, u \rangle} \geq \lambda_n.
\]

For any vector \(u \) which is orthogonal to \(v_1 \), we have

\[
\lambda_2 \geq \frac{\langle Au, u \rangle}{\langle u, u \rangle} \geq \lambda_n.
\]
The proof of the first equation is simple enough: if \(u = \sum c_i v_i \) then \(\langle Au, u \rangle / \langle u, u \rangle = (\sum \lambda_i c_i^2) / (\sum c_i^2) \), which is between \(\lambda_1 \) and \(\lambda_n \). The second result is similar, just noting that the condition that \(u \) is orthogonal to \(v_1 \) means that \(\lambda_1 = 0 \).

* * *

Let \(G \) be a \(d \) regular graph.\(^1\) Let \(A \) be the adjacency matrix, and let \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) be the eigenvalues of \(A \). As a first application of these ideas, we show that all the \(\lambda_i \)'s lie between \(-d \) and \(d \). By the spectral theorem, we know that the \(\lambda_i \) are real.

Proof: Let \(L \) be the Laplacian matrix, \(L = d \cdot \Id - A \). So the eigenvalues of \(L \) are \(d - \lambda_1, \ldots, d - \lambda_n \). Note that, for any vector \(u \), we have \(\langle u, Lu \rangle = \sum_{(i,j) \in \text{Edge}(G)} (u(i) - u(j))^2 \geq 0 \). In particular, if \(v_i \) are the orthonormal eigenvectors of \(A \), then we have \(\langle v_i, Lv_i \rangle = (d - \lambda_i)\langle v_i, v_i \rangle = d - \lambda_i \). So \(d - \lambda_i \geq 0 \) and we see that \(d \geq \lambda_i \). A similar argument, using \(d \cdot \Id + A \), shows that \(-d \leq \lambda_i \).

Exercise Show that \(\lambda_2 = d \) if and only if \(G \) is disconnected. Show that \(\lambda_n = -d \) if and only if \(G \) is bipartite.

* * *

We now return to our study of how well random walks mix on \(G \). Let \(\ell \) be the largest absolute value of any of \(\lambda_2, \lambda_3, \ldots, \lambda_n \), so \(\ell \) is either \(\lambda_2 \) or \(-\lambda_n \).

As we noted last time, the number of walks from \(r \) to \(s \) of length \(k \) is of the form \(c_1 d^k + c_2 \lambda_2^k + \cdots \) for various constants \(c_2, \ldots, c_n \) which we were not able to compute at that time. We now remedy this. We have

\[
A^k = S^T \begin{pmatrix} \lambda_1^k \\ \lambda_2^k \\ \vdots \\ \lambda_n^k \end{pmatrix} S.
\]

So the \((r,s)\) entry of \(A^k \) is

\[
\sum_{i=1}^n \langle v_i, v_i \rangle \lambda_i^k = \sum_{i=1}^n (v_i)_r (v_i)_s \lambda_i^k.
\]

Let’s start with the \(i = 1 \) term, which will give us the coefficient of \(d^n \). The eigenvector with eigenvalue \(d \) is \((1,1,\ldots,1)\). That’s before normalizing to become orthonormal. The all ones vector has length \(\sqrt{n} \), so \(v_1 = (1/\sqrt{n}, 1/\sqrt{n}, \ldots, 1/\sqrt{n}) \). Thus, the leading term of our sum is \(1/\sqrt{n} d^n = d^n / n \). Notice that, if the \(d^n \) paths from \(r \) were distributed at random, we’d expect \(d^n / n \) of them to land at \(s \).

For a crude bound for the other terms, since \(\langle v_i, v_i \rangle = 1 \), every coordinate of \(v_i \) is at most \(1 \). So we deduce that

\[
|\#(\text{paths from } r \text{ to } s \text{ of length } k) - d^n / n| \leq \ell^n + \ell^n + \cdots + \ell^n = (n-1)\ell^k.
\]

We can do a little better if we think about the fact that the \(v_i \) are orthonormal. Although any individual component in a \(v_i \) might be near \(1 \), we can’t have many of them near \(1 \) all at once. More specifically, we have the equality of matrices

\[
\sum v_i v_i^T = \Id
\]

so

\[
\sum_{i=1}^n (v_i)_r^2 = 1.
\]

\(^1\)Almost all of these ideas can be generalized to non-regular graphs, but the notation gets worse.
By Cauchy-Schwartz, $\sum |(v_i)_r||(v_i)_s| \leq 1$ and we have

$$|\#(\text{paths from } r \text{ to } s \text{ of length } k) - d^r/n| \leq \ell^k \left(\sum_{i=2}^{n} |(v_i)_r||(v_i)_s| \right) \leq \ell^k.$$

Let’s see what this implies about the diameter of G. Let $K + 1$ be the greatest distance between any two vertices of G. We must have that $d^K/n \leq \ell^K$, so that it is possible there can be no paths of length $\leq K$ from r to s. In other words,

$$K \leq \frac{\log n}{\log d - \log \ell}.$$

Notice that $\log n/\log d$ is an obvious lower bound for K. So, if ℓ is significantly less than d, then we come within a constant factor of this lower bound.

This seems like a good point to tell the definition of an expander sequence: For fixed d, an expander sequence is a sequence of graphs G_n, all d regular, such that the size of G_n goes to ∞ there is a constant $R < d$ so that $\ell(G_n) < R$ for all n.

In particular, for an expander sequence, the diameter is close to the minimum possible, and we see that signals sent through an expander graph distribute very fast.

As a second, longer, application, we will show that, if λ_2 is significantly less than d, then any separation of G into two pieces must cut many edges.

Let’s partition the vertices of G into two sets, X and Y. We will build a vector u which is orthogonal to v_1. Namely, $u(w) = 1/|X|$ if $w \in X$ and $u(w) = -1/|Y|$ if $w \in Y$. Notice that $\langle u, v_1 \rangle$ is nothing but $\sum u(w) = |X|/|X| - |Y|/|Y| = 0$.

We thus know that

$$\frac{\langle u, Au \rangle}{\langle u, u \rangle} \leq \lambda_2.$$

Although it isn’t too bad to compute $\langle u, Au \rangle$, it is even easy to work with the Laplacian. The eigenvalues of L are $0, d - \lambda_2, \ldots, d - \lambda_n$, and the eigenvectors are the same as for A. So

$$\frac{\langle u, Lu \rangle}{\langle u, u \rangle} \geq d - \lambda_2.$$

The numerator is $\sum_{(i,j) \in \text{Edge}(G)} (u(i) - u(j))^2$ This is

$$\#(\text{Edges between } X \text{ and } Y)(1/|X| + 1/|Y|)^2.$$

The denominator, meanwhile, is $\sum u(w)^2 = |X|/|X|^2 + |Y|/|Y|^2 = 1/|X| + 1/|Y|$.

Putting it all together,

$$\frac{\#(\text{Edges between } X \text{ and } Y)(1/|X| + 1/|Y|)^2}{1/|X| + 1/|Y|} \geq d - \lambda_2.$$

We have $1/|X| + 1/|Y| = |X| \cdot |Y|/(|X| + |Y|) = |X| \cdot |Y|/n$ so we have

$$\#(\text{Edges between } X \text{ and } Y)(1/|X| + 1/|Y|)^2 \geq \frac{d - \lambda_2}{n} |X| \cdot |Y|.$$

In other words, of the $|X| \cdot |Y|$ possible edges between X and Y, at least $(d - \lambda_2)/n$ of them are present. For a random pair of vertices, the odds that there is an edge between them is d/n. So, when λ_2 is significantly less than d, the number of edges between X and Y is always within a constant ratio of what you would expect at random.