Some extra problems

Many of the problems are “True or False” questions. (That usually makes them harder.) If true, you should prove the statement. If false, you should provide a counterexample.

Some of the later questions are quite difficult and should be considered challenge problems.

1. Let A and B be square matrices of the same size. True or False:

2. True or False: there is a 3×3 matrix A so that $A^7 = I$, but A, A^2, \ldots, A^6 are all different from I.

3. Let A be a square matrix such that the sum of the entries in each row adds up to 1. What can you say about the matrix $I - A$?

4. Let $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$. Suppose

 $$\text{span}\{v_1, v_2, \ldots, v_k, x\} = \text{span}\{v_1, v_2, \ldots, v_k\}.$$

 Prove that $x \in \text{span}\{v_1, v_2, \ldots, v_k\}$.

5. Bob thinks that

 $$A = \begin{bmatrix} -3 & 1 & 2 \\ -1 & 4 & 2 \\ 2 & 0 & 6 \end{bmatrix}$$

 is the square $A = B^2$ of another matrix B. Do you believe him?

 Alice thinks that the same matrix A can be written as $A = CC^T$ for some (possibly non-square) matrix C. Do you believe her?

6. Let A be the same matrix as in the previous problem. Suppose $v_1, v_2, v_3 \in \mathbb{R}^3$ are linearly independent vectors. True or False: it is always the case that Av_1, Av_2, Av_3 are linearly independent.

7. Take the same matrix A again. Change at most one number in A to obtain a matrix B, and find a vector $v \in \mathbb{R}^3$, so that $Bx = v$ has no solution.

 This is the kind of thing I find myself doing a lot before an exam or quiz...

8. Let A and B be any two matrices so that the transformation

 $$x \mapsto ABx$$

 is one-to-one. True or False: $x \mapsto Ax$ is one-to-one. (Also, same question but for B.)
9. Let A, B, C be 2×2 matrices, and suppose that A and C are invertible. Show that the 4×4 matrix (composed of 2×2 blocks)
\[
\begin{bmatrix}
A & B \\
0 & C
\end{bmatrix}
\]
is also invertible, and write down its inverse.

10. Prove that given any five vectors $v_1, v_2, \ldots, v_5 \in \mathbb{R}^3$, one can find numbers c_1, c_2, \ldots, c_5 such that both
\[
c_1v_1 + c_2v_2 + \cdots + c_5v_5 = 0 \quad \text{and} \quad c_1 + c_2 + \cdots + c_5 = 0.
\]

11. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A. Let $S : \mathbb{R}^m \to \mathbb{R}^n$ be the linear transformation with standard matrix A^T. Prove or disprove: T is one-to-one if and only if S is onto.

12. The trace $tr(A)$ of a square $n \times n$ matrix A is the sum $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$ of diagonal entries. Prove that $tr(AB) = tr(BA)$ for two $n \times n$ matrices A and B.

13. Let A be a square matrix. We know (do we?) that A is invertible if and only if we can find a square matrix B such that $AB = I$.

True or False: A is singular if and only if we can find a square matrix B such that $AB = 0$.

14. Let a, b, c be numbers. Show that the determinant of the matrix
\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & a & b \\
1 & a^2 & b^2
\end{bmatrix}
\]
is $-(a - b)(b - c)(a - c)$. Generalize this to $n \times n$ matrices. Can you prove it?

15. Let A be the 2×2 matrix corresponding to a rotation by 45°. Let B be the 2×2 matrix corresponding to reflection in the x-axis. How many different matrices can you get by multiplying a bunch of A’s and a bunch of B’s in some order? For example, matrices such as
\[
ABBA, \quad \text{or} \quad AAABABA.
\]

16. Suppose that $A = -A^T$ (such a matrix is called skew-symmetric). Show that $I + A$ is invertible.

17. Let A and B be 2×2 matrices. Is it always possible to find numbers a, b not both zero, so that $\det(aA + bB) = 0$?