Book Homework #14 Answers
Math 217 W11

6.5.12.

a) \(\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \)

b) \(\mathbf{x} = \begin{pmatrix} 1/3 \\ 14/3 \\ -5/3 \end{pmatrix} \)

6.5.16. \(\mathbf{x} = \begin{pmatrix} 2.9 \\ 9 \end{pmatrix} \)

6.5.18.

a) True. (Paragraph following def'n of least-squares solution)

b) False. (Figure 1 and the preceding discussion)

c) True. (Equation (1) and following discussion)

d) False. (This formula only applies when the columns of \(A \) are linearly independent.)

e) True. (Equation (1) and following discussion)

f) False. (“Numerical Note”)

6.5.20. Suppose that \(Ax = 0 \). Then \(A^T Ax = A^T 0 = 0 \). Since \(A^T A \) is invertible, by hypothesis, \(x = 0 \). Hence the columns of \(A \) are linearly independent.

6.5.22. \(A^T A \) has \(n \) columns. Then \(\text{rank } A^T A = n - \dim \text{Nul } A^T A = n - \dim \text{Nul } A = \text{rank } A \), where the first and last equalities are by the rank-nullity theorem and the middle one uses Exercise 19 (which is odd and has a solution in the book).

6.7.9.

a) \(\hat{p}_2(t) = 5 \)

b) \((p_2 - \hat{p}_2)(t) = t^2 - 5 \) completes an orthogonal basis. The multiple \(q(t) = \frac{1}{4}(t^2 - 5) \) is correctly normalized.

6.7.10.

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>(p_0)</th>
<th>(p_1)</th>
<th>(q)</th>
<th>(p(t) = t^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>[1]</td>
<td>[-1]</td>
<td>[1]</td>
<td>[-27]</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>[3]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
</tbody>
</table>

\(\hat{p}(t) = \frac{0}{7} p_0(t) + \frac{164}{20} p_1(t) + \frac{0}{7} q(t) = \frac{41}{5} t \)

6.7.14. We check the defining properties of an inner product in turn.

1.

\(\langle u, v \rangle = T(u) \cdot T(v) \quad \text{(definition of } \langle \cdot, \cdot \rangle) \)

\(= T(v) \cdot T(u) \quad \text{(commutativity of dot product) } \)

\(= \langle v, u \rangle \quad \text{(definition of } \langle \cdot, \cdot \rangle) \)
2.
\[\langle u + v, w \rangle = T(u + v) \cdot T(w) \quad \text{(definition of} \, \langle \cdot, \cdot \rangle) \]
\[= (T(u) + T(v)) \cdot T(w) \quad \text{(linearity of} \, T) \]
\[= T(u) \cdot T(w) + T(v) \cdot T(w) \quad \text{(dot product distributes over addition)} \]
\[= \langle u, w \rangle + \langle v, w \rangle \quad \text{(definition of} \, \langle \cdot, \cdot \rangle) \]

3.
\[\langle cu, v \rangle = T(cu) \cdot T(v) \quad \text{(definition of} \, \langle \cdot, \cdot \rangle) \]
\[= (cT(u)) \cdot T(v) \quad \text{(linearity of} \, T) \]
\[= c(T(u) \cdot T(v)) \quad \text{(bilinearity of dot product)} \]
\[= c\langle u, v \rangle \quad \text{(definition of} \, \langle \cdot, \cdot \rangle) \]

4. For each \(u \), we have \(\langle u, u \rangle = T(u) \cdot T(u) \geq 0 \) (Theorem 1d). If \(u = 0 \), then by linearity \(T(u) = 0 \), and thus \(\langle 0, 0 \rangle = 0 \cdot 0 = 0 \). Finally, if \(\langle u, u \rangle = 0 \), then \(T(u) \cdot T(u) = 0 \), so \(T(u) = 0 \) by Theorem 1d. Since \(T \) is an isomorphism, this implies \(u = 0 \).

(Note that this part, and only this part, fails if we merely assume that \(T \) is linear.)

6.7.16.
\[\| u - v \|^2 = \langle u - v, u - v \rangle \]
\[= \langle u, u - v \rangle - \langle v, u - v \rangle \]
\[= \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle \]
\[= 1 - 0 - 0 + 1 \]
\[= 2 \]

Thus, \(\| u - v \| = \sqrt{2} \).

6.7.25. \(1, t, 3t^2 - 1 \)

6.7.26. \(1, t, 3t^2 - 4 \)