Proofs Homework Set 7

Math 217 — Winter 2011

Due February 23

Problem 7.1. Let V and W be vector spaces, and suppose that $T : V \to W$ is a one-to-one linear transformation. If there are vectors v_1, v_2, \ldots, v_k in V such that the vectors $T(v_1), T(v_2), \ldots, T(v_k)$ span W, prove that the vectors v_1, v_2, \ldots, v_k span V.

Problem 7.2. Let V be a vector space. Suppose that H is a nonempty subset of V such that $\text{Span}\{x, y\} \subseteq H$ for all vectors $x, y \in H$. Prove that H is a subspace of V.

Problem 7.3. Consider the vector space $C(\mathbb{R})$ of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. Let $Z : C(\mathbb{R}) \to \mathbb{R}$ be defined by $Z(f) = f(0)$.

(a) Prove that Z is a linear transformation.

(b) Prove that Z is onto.

(c) Using part (a), prove that the set $\{f \in C(\mathbb{R}) \mid f(0) = 0\}$ is a subspace of $C(\mathbb{R})$.