Polytope canonical forms

Let $P \subset \mathbb{P}^d$ be a (oriented) projective polytope. Then P has a canonical form $\Omega(P)$, which is a rational d-form on \mathbb{P}^d.

1. (Residue definition) $\Omega(P)$ has poles only along facet hyperplanes, these poles are simple, and we have
 \[\text{Res}_H \Omega(P) = \Omega(F) \]
 where H is a facet hyperplane and $F = H \cap P$ is a facet.

2. (Subdivisions or triangulations) Suppose P is subdivided into polytopes T_1, T_2, \ldots, T_r. Then
 \[\Omega(P) = \sum_{i=1}^r \Omega(T_i). \]

3. (Dual volume) Suppose $P \subset \mathbb{R}^d \subset \mathbb{P}^d$. Then
 \[\Omega(P)(x) = \text{Vol}((P - x)^\vee) d^d x. \]
 where $x \in \mathbb{R}^d$. Here, Vol denotes normalized volume and Q^\vee is the dual (or polar) polytope of Q.

4. (Laplace transform) Let $C \subset \mathbb{R}^{d+1}$ denote the cone over P. Then
 \[\Omega(P) = \frac{1}{d!} \left(\int_{C^\vee} e^{-x^T y} dy \right) \langle x^d d^d x \rangle \]
 where $C^\vee \subset \mathbb{R}^{d+1}$ is the dual cone, and here x, y are vectors in \mathbb{R}^{d+1}.

5. (Numerator is adjoint) Suppose $P \subset \mathbb{R}^d \subset \mathbb{P}^d$. Then
 \[\Omega(P) = c \cdot \text{adjoint hypersurface} \frac{d^d x}{\prod_{\text{facets } H} H} \]
 for some nonzero constant c.

6. (Pushforward) Suppose P has (projective) vertices w_1, w_2, \ldots, w_m, and let \{$(1, v_1), (1, v_2), \ldots, (1, v_m)$\} be vectors in \mathbb{R}^{d+1} with the same oriented matroid as \{(w_1, w_2, \ldots, w_m)\} i.e. $\text{sign det}(w_{i_1}, \ldots, w_{i_{d+1}}) = \text{sign det}((1, v_{i_1}, \ldots, (1, v_{i_{d+1}}))$ for all $\{i_1, \ldots, i_{d+1}\}$. Define the rational map $\Phi_V : (\mathbb{C}^\times)^d \to \mathbb{P}^d$ by
 \[\Phi : (x_1, \ldots, x_d) \mapsto \sum_{i=1}^m x^{v_i} w_i. \]
 Then
 \[\Omega(P) = \Phi_* \prod_i d\log x_i. \]