Mirror symmetry for flag varieties
via
Langlands reciprocity

Thomas Lam

June 2018

This is joint work with Nicolas Templier.
Quantum differential equations

M smooth compact Fano variety over \mathbb{C}
Examples: \mathbb{P}^n, $\text{Gr}(k, n)$, G/P, ...
Fano index: largest integer m such that $-K_X = mD$ in $\text{Pic}(M)$
Quantum differential equations

M smooth compact Fano variety over \mathbb{C}
Examples: \mathbb{P}^n, $\text{Gr}(k, n)$, G/P, . . .
Fano index: largest integer m such that $-K_X = mD$ in $\text{Pic}(M)$

Quantum connection (Dubrovin) in anticanonical direction

Connection on the trivial $H^*(M)$-bundle over \mathbb{C}_q^\times:

$$\nabla = \nabla_M = d + D_q \frac{dq}{q}$$

Here, log q is a coordinate on $\mathbb{C} \cdot [D] \subseteq H^2(X, \mathbb{C})$.
∇ is a connection on \mathbb{C}_q^\times (regular at 0 and irregular at ∞).
Quantum differential equations

M smooth compact Fano variety over \mathbb{C}
Examples: \mathbb{P}^n, $\text{Gr}(k, n)$, G/P, ...
Fano index: largest integer m such that $-K_X = mD$ in $\text{Pic}(M)$

Quantum connection (Dubrovin) in anticanonical direction

Connection on the trivial $H^*(M)$-bundle over \mathbb{C}_q^\times:

$$\nabla = \nabla_M = d + D \ast_q \frac{dq}{q}$$

Here, log q is a coordinate on $\mathbb{C} \cdot [D] \subseteq H^2(X, \mathbb{C})$.
∇ is a connection on \mathbb{C}_q^\times (regular at 0 and irregular at ∞).

$M = \mathbb{P}^1$ with $\dim(H^*(\mathbb{P}^1)) = 2$

$$\left(q \frac{d}{dq} + \begin{bmatrix} 0 & q \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} y_1(q) \\ y_2(q) \end{bmatrix} = 0$$
Landau-Ginzburg model

\[(X = \text{smooth complex variety, } f, \pi)\]

\[
\begin{array}{ccc}
X & \xrightarrow{f} & \mathbb{C} \\
\downarrow{\pi} & & \downarrow{\pi} \\
\mathbb{C}^\times_q & & \\
\end{array}
\]
Landau-Ginzburg model

\[(X = \text{smooth complex variety}, f, \pi)\]

Integral functions

\[X_q := \pi^{-1}(q)\]

\[\Psi(q) := \int_{\Gamma_q \subset X_q} e^{f(x)} \omega_q\]
Landau-Ginzburg model

\[X \overset{f}{\longrightarrow} \mathbb{C} \]
\[\downarrow \pi \]
\[\mathbb{C}_q^\times \]

\((X = \text{smooth complex variety}, f, \pi) \)

Integral functions

\[X_q := \pi^{-1}(q) \]
\[\psi(q) := \int_{\Gamma_q \subset X_q} e^{f(x)} \omega_q \]

Landau-Ginzburg D-module

\[\text{Exp} := \mathbb{C}\langle x, \partial \rangle / (\partial x - x \partial - 1) = \mathbb{C}\langle x, \partial \rangle \cdot e^x \]

\[C = C(X, f, \pi) := R\pi_! f^* \text{Exp}. \]

Object in derived category of D-modules on \(\mathbb{C}_q^\times \).
Givental’s mirror conjecture

The integral functions $\Psi(q)$ are solutions to ∇_M.
Givental’s mirror conjecture

The integral functions $\Psi(q)$ are solutions to ∇_M.

Stronger variant: D-module mirror conjecture

$\mathcal{C}(X, f, \pi)$ is a D-module and is isomorphic to ∇_M as D-modules on \mathbb{C}_q^\times.
Main Theorem

Theorem (L.-Templier)

Mirror conjecture holds for $M = G^\vee / P^\vee$ a minuscule flag variety, and Rietsch’s LG-model (X, f, π).

Minuscule flag varieties:

- \mathbb{P}^n (classical/Givental),
- $\text{Gr}(k, n)$ (injection proved by Marsh-Rietsch),
- $\text{OG}(n, 2n + 1), \text{OG}(n, 2n)$,
- Q^{2n} (injection proved by Pech-Rietsch-Williams),
- Cayley plane,
- Freudenthal variety
Rietsch’s LG-model

- (X, f, π) is a geometric crystal of Berenstein-Kazhdan,
- $\Psi(q)$ is a geometric character,
- $C(X, f, \pi)$ is called the character D-module.

The fibers

$$X_q = \pi^{-1}(q) \cong G^\circ / P \subset G / P$$

are isomorphic to a log Calabi-Yau subvariety called a projected Richardson variety (Lusztig, Rietsch, Goodearl-Yakimov, Knutson-L.-Speyer,..).
Proof idea

\[\text{B-model} \quad \begin{array}{c}
\text{character } D\text{-module of geometric crystal for } (G, P) \\
\end{array} \quad \text{Givental-Rietsch mirror conjecture} \quad \begin{array}{c}
\text{A-model} \\
\text{quantum } D\text{-module for } G^\vee / P^\vee \\
\end{array} \]

- **LT**
 - Kloosterman \(D\)-module
 - Zhu’s Theorem
- **LT**
 - Frenkel-Gross connection
 - Galois

Zhu’s theorem (based on Beilinson-Drinfeld) is an instance of the ramified geometric Langlands conjectures. Right hand side is a calculation. Depends on some computations with canonical bases, and Mihalcea’s quantum Chevalley formula. (cf. Golyshev-Manivel in simply-laced cases)
Zhu’s theorem (based on Beilinson-Drinfeld) is an instance of the ramified geometric Langlands conjectures.
Zhu’s theorem (based on Beilinson-Drinfeld) is an instance of the ramified geometric Langlands conjectures. Right hand side is a calculation. Depends on some computations with canonical bases, and Mihalcea’s quantum Chevalley formula. (cf. Golyshev-Manivel in simply-laced cases)
Projective space case

\[M = \mathbb{P}^{n-1} \quad QH^*(\mathbb{P}^{n-1}) = \mathbb{C}[x, q]/(x^n - q). \]

quantum D-module

\[
q \frac{d}{dq} + \begin{bmatrix}
0 & 0 & \cdots & 0 & q \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
\end{bmatrix} = 0 \iff ((q \frac{d}{dq})^n - q)(\vec{y}(q)) = 0
\]

(For \(n = 1 \): Bessel equation)
Projective space case

\[M = \mathbb{P}^{n-1} \quad QH^*(\mathbb{P}^{n-1}) = \mathbb{C}[x, q]/(x^n - q). \]

quantum \(D \)-module

\[
q \frac{d}{dq} + \begin{bmatrix}
0 & 0 & \cdots & 0 & q \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
\end{bmatrix} = 0 \iff ((q \frac{d}{dq})^n - q)(\vec{y}(q)) = 0
\]

(For \(n = 1 \): Bessel equation)

LG-model

\[
\begin{array}{ccc}
(\mathbb{C}^\times)^n & \xrightarrow{f} & \mathbb{C} \\
\downarrow \pi & & \downarrow \\
\mathbb{C}^\times_q & & x_1 x_2 \cdots x_n \\
\end{array}
\]
Kloosterman sums

Base change to \mathbb{F}_q

$$ (\mathbb{F}_q^\times)^n \xrightarrow{f} \mathbb{F}_q $$

$$ \xrightarrow{\pi} $$

$$ \mathbb{F}_q^\times $$

$$(x_1, x_2, \ldots, x_n) \quad \xrightarrow{\text{map}} \quad x_1 + x_2 + \cdots + x_n$$

$$ x_1 x_2 \cdots x_n $$

Kloosterman sums are analogues of the $\Psi(q)$

For $a \in \mathbb{F}_q^\times$, define

$$ K_{l,n}(a) := (-1)^{n-1} \sum_{x_1 x_2 \cdots x_n = a} \exp \left(\frac{2\pi i}{p} \text{Tr} f(x) \right) \in \mathbb{C} $$

Here, $\text{Tr} : \mathbb{F}_q \rightarrow \mathbb{F}_p$.

Weil-Deligne bound: $|K_{l,n}(a)| \leq n q^{(n-1)/2}$.
Kloosterman sheaves

Deligne (1970s): defined Kloosterman sheaf

\[\text{Kl}_{\mathbb{Q}_\ell}^n := R\pi_! f^* \text{AS}_\chi \]

where \(\text{AS}_\chi \) is an Artin-Schreier sheaf. For suitable \(\chi \) and \(\iota: \overline{\mathbb{Q}}_{\ell} \to \mathbb{C} \),

\[\text{Kl}_n(a) = \iota \text{Tr}(\text{Frob}_a, (\text{Kl}_{\mathbb{Q}_\ell}^n)_a) \]
Deligne (1970s): defined Kloosterman sheaf

$$\text{Kl}^\mathbb{Q}_\ell_n := R\pi_! f^* \text{AS}_\chi$$

where AS_χ is an Artin-Schreier sheaf. For suitable χ and $\nu : \mathbb{Q}_\ell \to \mathbb{C}$,

$$\text{Kl}_n(a) = \nu \text{Tr} (\text{Frob}_a, (\text{Kl}^\mathbb{Q}_\ell_n)_a)$$

Deligne: $\text{Kl}^\mathbb{Q}_\ell_n$ is

- concentrated in degree 0 and is a local system
- tamely ramified at 0, maximal unipotent monodromy
- totally wildly ramified at ∞, Swan conductor equal to 1
- pure of weight $n - 1$.

Katz: showed that $\text{Kl}^\mathbb{Q}_\ell_n$ is rigid: determined by local monodromies

Gross (~ 2010): $F = \mathbb{F}_q(t)$, automorphic representation for $G(\mathbb{A}_F)$ for all semisimple G. For $G = GL_n$, the local representations matched the monodromies calculated by Deligne.
HNY’s automorphic sheaf (a geometric version of Gross’s automorphic representation)

\[\mathcal{A}_G \text{ on moduli stack of } G\text{-bundles } \text{Bun}_G \text{ on } \mathbb{P}^1 \]

The curve here is \(\mathbb{P}^1_q \supset \mathbb{G}_m \).
HNY’s automorphic sheaf (a geometric version of Gross’s automorphic representation)

A_G on moduli stack of G-bundles Bun_G on \mathbb{P}^1

The curve here is $\mathbb{P}^1_q \supset \mathbb{G}_m$.

Here, G is a non-constant group scheme over \mathbb{P}^1, which is isomorphic to $G \times \mathbb{G}_m$ over \mathbb{G}_m. Behavior at 0 and ∞ encode information about the ramification.
Definition of Kloosterman D-module

$$\text{Hecke} := \{(\mathcal{E}_1, \mathcal{E}_2, x \in \mathbb{G}_m, \phi : \mathcal{E}_1|_{\mathbb{P}^1-x} \simeq \mathcal{E}_2|_{\mathbb{P}^1-x})\}.$$

Hecke correspondence

$$\begin{array}{ccc}
\text{Hecke} & \xleftarrow{p_1} & \text{Bun}_G \\
\xrightarrow{p_2} & & \text{Bun}_G \times \mathbb{G}_m \\
\end{array}$$

Theorem (Heinloth-Ngo-Yun)

Heuristic version (actual version uses IC-sheaves):

$$Rp_2 \ast p_1^* \mathcal{A}_G \cong \mathcal{A}_G \boxtimes Kl_{G^\vee}$$

where Kl_{G^\vee} is the G^\vee-Kloosterman sheaf.

Work over \mathbb{C} with D-modules to define Kloosterman D-modules. For $G^\vee = GL(n)$, recover Deligne’s Kloosterman sheaf.
LG-models appear inside Hecke correspondence

Our idea: a piece of the Hecke correspondence

\[\text{Hecke} \]

\[\mathcal{G}_r^r \subset \text{Bun}_G \quad \ast \times \mathcal{G}_m \subset \text{Bun}_G \times \mathcal{G}_m \]

becomes isomorphic to

\[X = \mathbb{C} \quad \text{after} \]

- basechanging to \(\mathbb{C} \)
- composing with the sum map \(\mathcal{G}_r^r \to \mathcal{G}_a \)
- intersecting with a substack \(\text{Hecke}_\lambda \subset \text{Hecke} \), whose fibers are finite-type \(\text{Gr}_\lambda \subset \text{Gr}_G \).
Other G^\vee/P^\vee?

Hodge numbers of CY hypersurfaces $H \subset G^\vee/P^\vee$ vs. exponential hodge numbers of (X, f).

Relation to Langlands functoriality: the quantum connection for G^\vee/P^\vee is naturally a $G^\vee D$-module, even though it is defined as a $\text{GL}(H^*(G^\vee/P^\vee)) D$-module.

For M arbitrary Fano, the quantum connection is a $\text{GL}(H^*(M)) \theta$-connection (Yun, Chen) built from picking a vector $X \in g_1$ in a Vinberg θ-group $g = \bigoplus_{i \in \mathbb{Z}/m\mathbb{Z}} g_i$. It is irregular with slope $1/m$, where m is the Fano index.