The first midterm will cover Chapters 1 and 2, Sections 3.1-3.3 of your textbook (4th edition). It will also cover injectivity and surjectivity of functions. You will not be allowed a calculator, notes, or textbook. Here we briefly review some facts about injective and surjective linear functions.

Definition. A linear transformation \(T : \mathbb{R}^m \to \mathbb{R}^n \) is injective if for every \(y \in \mathbb{R}^n \) there is at most one \(x \in \mathbb{R}^m \) such that \(T(x) = y \).

Let \(T : \mathbb{R}^m \to \mathbb{R}^n \) be a linear transformation with associated matrix \(A \). Then \(T \) is injective if and only if \(\text{rref}(A) \) has a pivot in every column if and only if \(A \) has rank \(m \) if and only if the kernel \(\text{ker}(T) \) of \(T \) is 0.

Definition. A linear transformation \(T : \mathbb{R}^m \to \mathbb{R}^n \) is surjective if for every \(y \in \mathbb{R}^n \) there is at least one \(x \in \mathbb{R}^m \) such that \(T(x) = y \).

Let \(T : \mathbb{R}^m \to \mathbb{R}^n \) be a linear transformation with associated matrix \(A \). Then \(T \) is surjective if and only if \(\text{rref}(A) \) has a pivot in every row if and only if \(A \) has rank \(n \) if and only if the image \(\text{im}(T) \) is \(\mathbb{R}^n \).

Definition. A linear transformation \(T : \mathbb{R}^m \to \mathbb{R}^n \) is invertible if for every \(y \in \mathbb{R}^n \) there is exactly one \(x \in \mathbb{R}^m \) such that \(T(x) = y \).

Let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be a linear transformation with associated matrix \(A \). Then \(T \) is invertible if and only if \(T \) is injective and surjective if and only if the rank of \(A \) is \(n \) if and only if \(\ker(T) = 0 \) if and only if \(\text{im}(T) = \mathbb{R}^n \).

Exercise: Determine which of the following matrices determines a linear transformation which is (a) injective, (b) surjective, (c) invertible:

\[
\begin{pmatrix}
1 & -3 & 4 & 7 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 5
\end{pmatrix}
\quad
\begin{pmatrix}
-3 & 5 \\
2 & 2 \\
4 & 0 \\
1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
1 & -1 & 0 \\
4 & 0 & 2 \\
5 & 5 & 5
\end{pmatrix}
\]