1. Consider the matrix \(A(t) = \begin{pmatrix} t & 0 & t \\ -1 & t^2 & t^3 \\ t & 0 & 1 \end{pmatrix} \).

(1) (5 points) Calculate \(\det(A) \) in terms of \(t \).
(2) (4 points) For what real values of \(t \) is \(A \) invertible?

2. (1) (8 points) Find the general solution of \(y'' + y = \cos(x) \).
(2) (10 points) Find the general solution of \(x' = -x + y, y' = x + y \), you might want to eliminate \(y \) and solve for \(x \), then find \(y \). Here \(y = y(t), x = x(t) \) are differentiable functions of \(t \).

3. Consider the matrix \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \).

(1)(5 points) Find all eigenvalues, then calculate \(\det(A) \) and \(Tr(A) \).
(2)(8 points) Find a fundamental set of solutions to the system \(X' = AX \).
(3)(8 points) Solve the initial value problem \(X' = AX, X(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \).

4. A forced and damped mass-spring system is governed by the equation \(x'' + 2x' + 26x = 82\cos(4t) \).

(1) (6 points) Find the general solution to the associated homogeneous equation \(x'' + 2x' + 26x = 0 \);
(2) (6 points) Find a particular solution (using method of undetermined coefficients);
(3) (7 points) Write the particular solution in (2) as a steady periodic solution \(x_{sp}(t) = C\cos(wt - a) \), and find this positive constant \(C \) and angle \(a \);
(4) (7 points) If the initial values are given as \(x(0) = 6, x'(0) = 0 \), solve this initial value problem.

5. For a system \(x_1' = x_1 + 5x_3, x_2' = 4x_2 - 3x_3, x_3' = 3x_2 + 4x_3 \) where \(x_1 = x_1(t), x_2 = x_2(t), x_3 = x_3(t) \) are differentiable functions of \(t \).

(1) (5 points) Write this system as a matrix form \(X' = AX \), identify all matrices here;
(2) (6 points) Find all eigenvalues of \(A \).
(3) (8 points) Find a general solution to this system.

6. (7 points) Consider the matrix \(A = \begin{pmatrix} 3 & 1 & 1 \\ -5 & -3 & -1 \\ 5 & 5 & 3 \end{pmatrix} \), to save your time it's known that 2 is an eigenvalue, find all other eigenvalues.