Problem Set 3

Section 13.3, Pages 848–850:

10) Find \(a \cdot b \) where \(|a| = 4, |b| = 10 \), the angle between \(a \) and \(b \) is 120\(^\circ\).

41) Show that the vector orth\(_a\)b = b − proj\(_a\)b is orthogonal to \(a \). (It is called an orthogonal projection of \(b \)).

50) If \(r = \langle x, y, z \rangle, a = \langle a_1, a_2, a_3 \rangle \), and \(b = \langle b_1, b_2, b_3 \rangle \), show that the vector equation \((r - a) \cdot (r - b) = 0 \) represents a sphere, and find its center and radius.

56) Show that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.

Section 13.4, Pages 856–857:

6) For \(a = i + e^t j + e^{-t}k \) and \(b = 2i + e^t j - e^{-t}k \), find the cross product \(a \times b \) and verify that it is orthogonal to both \(a \) and \(b \).

34) Use the scalar triple product to determine whether the points \(P(1, 0, 1), Q(2, 4, 6), R(3, -1, 2) \) and \(S(6, 2, 8) \) lie in the same plane.

42) Prove part of Theorem 8, that is

\[
 a \times (b \times c) = (a \cdot c)b - (a \cdot b)c.
\]

Section 13.5, Pages 865–867:

22) Determine whether the lines \(L_1 \) and \(L_2 \) are parallel, skew, or intersecting where \(L_1 \) is defined by \(\frac{x-1}{2} = \)
\[
\frac{y-3}{2} = \frac{z-2}{1} \quad \text{and} \quad L_2 \text{ is defined by } \frac{x-1}{1} = \frac{y-6}{-1} = \frac{z+2}{3}. \quad \text{If they intersect, find the point of intersection.}
\]

30) Find an equation of the plane that contains the line \(x = 3 + 2t, y = t, z = 8 - t \) and is parallel to the plane \(2x + 4y + 8z = 17 \).

38) Find an equation of the plane that passes through the line of intersection of the planes \(x - z = 1 \) and \(y + 2z = 3 \) and is perpendicular to the plane \(x + y - 2z = 1 \).

68) Find the distance between the parallel planes \(3x + 6y - 9z = 4 \) and \(x + 2y - 3z = 1 \).

Extra Problem Write the equations of rigid body dynamics as a vector equation involving the cross product and as three separate scalar equations. Add in torques in explain how these act on the body.