32.1) Claim: \(f(x) = x^3 \) is integrable on \([0, b]\) for all \(b > 0\), and \(U(f) = L(f) = \int_0^b f = \frac{b^4}{4} \).

Proof: Let \(P = \{0 = t_0 < t_1 \cdots < t_n = b\} \) be any partition of \([0, b]\). Then, since \(f \) is increasing, \(M(f, [t_{k-1}, t_k]) = t_k^3 \) and \(m(f, [t_{k-1}, t_k]) = (t_{k-1})^3 \) for all \(k \). So,

\[
U(f, P) = \sum_{k=1}^{n} t_k^3(t_k - t_{k-1})
\]

and

\[
L(f, P) = \sum_{k=1}^{n} t_{k-1}^3(t_k - t_{k-1}).
\]

For any \(n \in \mathbb{N} \) we can consider the specific partition \(P_n = \{0 = t_0 < t_1 \cdots < t_n = b\} \) where \(t_k = \frac{bk}{n} \) for all \(k \). In this case

\[
U(f, P_n) = \sum_{k=1}^{n} \left(\frac{kb}{n} \right)^3 \left(\frac{b}{n} \right) = \frac{b^4}{n^4} \sum_{k=1}^{n} k^3.
\]

Exercise 1.3 and Example 1 in section 1 give that \(\sum_{k=1}^{n} k^3 = \frac{1}{4} \frac{n^2(n+1)^2}{2} \), so

\[
U(f, P_n) = \frac{b^4}{4n^4} \left(\frac{n(n+1)^2}{2} \right) = \frac{b^4(n+1)^2}{8n^2}.\]

We have previously observed that \(\lim \frac{n^2}{n^2} = \lim 1 + \frac{1}{n} = 1 \), so

\[
U(f, P_n) = \frac{b^4}{8} \frac{(n+1)^2}{n^2} \leq \frac{b^4}{8} \frac{(n+1)^2}{n^2} \leq \frac{b^4}{8}.\]

Similarly,

\[
L(f, P_n) = \frac{b^4}{8} \frac{(n+1)^2}{n^2} \leq \frac{b^4}{8} \frac{(n+1)^2}{n^2} \leq \frac{b^4}{8} \frac{(n+1)^2}{n^2} \leq \frac{b^4}{8}.
\]

Since \(U(f) \leq U(f, P_n) \) for all \(n \), this implies that \(U(f) \leq \frac{b^4}{8} \).

32.6) Let \(f \) be a bounded function on \([a, b]\).

Claim: If there exist sequences \((P_n) \) and \((Q_n) \) of partitions of \([a, b]\) such that \(\lim U(f, P_n) - L(f, Q_n) = 0 \),
then \(f \) is integrable on \([a, b]\) and \(\int_a^b f = \lim U(f, P_n) = \lim L(f, Q_n) \).

Proof: Let \(\epsilon > 0 \). Then, since \(\lim U(f, P_n) - L(f, Q_n) = 0 \), there exists \(N \) such that \(n > N \)
implies that \(|U(f, P_n) - L(f, Q_n)| < \epsilon \). Choose \(m \in \mathbb{N} \) such that \(m > N \) and let \(P = P_m \cup Q_m \).

Then, Lemma 32.2 implies that

\[
L(f, Q_m) \leq L(f, P) \leq U(f, P) \leq U(f, P_m) < L(f, Q_m) + \epsilon.
\]

Therefore, \(U(f, P) - L(f, P) < \epsilon \).

So, for all \(\epsilon > 0 \), there exists a partition \(P \) of \([a, b]\) such that that \(U(f, P) - L(f, P) < \epsilon \).

The Cauchy criterion for integrals, Theorem 32.5, then guarantees that \(f \) is integrable on \([a, b]\). Since

\[
U(f) \leq U(f, P_n) < L(f, Q_n) + (U(f, P_n) - L(f, Q_n)) \leq L(f) + (U(f, P_n) - L(f, Q_n)) \leq U(f) + (U(f, P_n) - L(f, Q_n))
\]

and \(\lim(U(f, P_n) - L(f, Q_n)) = 0 \), the squeeze principle implies that \(U_n = (U(f, P_n)) \) converges to \(U(f) \), so \(\int_a^b f = \lim U_n \). Similarly, \(\int_a^b f = \lim L_n \).
33.4) Claim: There exists a function \(g \) which is not integrable, but \(|g| \) is integrable.

Example: Let \(g : [0,1] \to \mathbb{R} \) be defined by \(g(x) = .5 \) if \(x \) is rational and \(g(x) = -.5 \) if \(x \) is irrational. Then \(|g(x)| = .5 \) for all \(x \in [0,1] \). Hence, \(|g| \) is integrable, since constant functions are continuous, they are also integrable (by Theorem 33.2).

Suppose \(g \) were integrable, then the function \(f : [0,1] \to \mathbb{R} \) defined by \(f(x) = g(x) + .5 \) would also be integrable, by Theorem 33.3. But, \(f \) is exactly the function discussed in Example 2 of section 32, where it is established that \(f \) is not integrable. Therefore, \(g \) must also not be integrable.

33.7) Suppose that \(|f(x)| \leq B \) for all \(x \in [a,b] \).

a) Claim: If \(P \) is any partition of \([a,b]\), then

\[
U(f^2, P) - L(f^2, P) \leq 2B(U(f, P) - L(f, P)).
\]

Proof: Let \(P = \{0 = t_0 < t_1 \cdots < t_n = b\} \) be a partition of \([a,b]\). If \(x_0, y_0 \in [t_{k-1}, t_k] \), then

\[
f^2(x_0) - f^2(y_0) = (f(x_0) + f(y_0))(f(x_0) - f(y_0)) \leq |f(x_0) + f(y_0)| |f(x_0) - f(y_0)| \leq 2B|f(x_0) - f(y_0)| \leq 2B(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]))
\]

Given any \(\epsilon > 0 \) there exists \(x_0, y_0 \in [t_{k-1}, t_k] \) such that \(f^2(x_0) > M(f^2, [t_{k-1}, t_k]) - \frac{\epsilon}{2} \) and \(f^2(y_0) < m(f^2, [t_{k-1}, t_k]) + \frac{\epsilon}{2} \). So,

\[
M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \leq f^2(x_0) - f^2(y_0) + \epsilon \leq 2B(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k])) + \epsilon
\]

But, since the above inequality holds for all \(\epsilon > 0 \), one concludes that

\[
M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \leq 2B(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k])).
\]

Therefore, by making use of the above inequality for each \(k \), we conclude that

\[
U(f^2, P) - L(f^2, P) = \sum_{k=1}^{n} \left(M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \right) (t_k - t_{k-1}) \leq \sum_{k=1}^{n} 2B \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) (t_k - t_{k-1}) \leq 2B \sum_{k=1}^{n} M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]))(t_k - t_{k-1}) = 2B(U(f, P) - L(f, P)).
\]

Thus, \(U(f^2, P) - L(f^2, P) \leq 2B(U(f, P) - L(f, P)) \) as claimed.

b) If \(f \) is integrable on \([a,b]\), then \(f^2 \) is integrable on \([a,b]\).

Proof: Given any \(\epsilon > 0 \), since \(f \) is integrable we may apply Theorem 32.5 to see that there exists a partition \(P \) of \([a,b]\), such that

\[
U(f, P) - L(f, P) < \frac{\epsilon}{2B}.
\]

From part a) we can then conclude, that

\[U(f^2, P) - L(f^2, P) \leq 2B(U(f, P) - L(f, P)) < 2B \left(\frac{\epsilon}{2B} \right) = \epsilon. \]

Thus, for any \(\epsilon > 0 \), there exists a partition \(P \) of \([a,b]\), such that
\[U(f^2, P) - L(f^2, P) < \epsilon. \] Theorem 32.5 then implies that \(f^2 \) is integrable on \([a,b]\).

33.8a) Claim: If \(f \) and \(g \) are integrable on \([a,b]\), then \(fg \) is integrable on \([a,b]\).
Proof: Suppose that \(f \) and \(g \) are integrable on \([a,b]\). Theorem 33.3(ii) implies that \(f + g \) and \(f - g = f + (-g) \) are integrable on \([a,b]\). Problem 33.7 implies that \((f + g)^2 \) and \((f - g)^2 \) are integrable on \([a,b]\). Theorem 33.3(i) implies that \(-f^2 \) is integrable on \([a,b]\). Theorem 33.3(ii) implies that \(4fg = (f + g)^2 + (-f - g)^2 \) is integrable on \([a,b]\). Finally, Theorem 33.3(i) implies that \(fg = \frac{1}{2}(f + g)^2 \) is integrable on \([a,b]\).

33.13) Claim: Suppose that \(f \) and \(g \) are continuous functions on \([a,b]\) and that \(\int_a^b f = \int_a^b g \). Then there exists \(x \in [a,b] \) such that \(f(x) = g(x) \).
Proof: Consider the function \(h = f - g \). Then, by Theorems 17.3 and 17.4, \(h \) is also continuous on \([a,b]\). Since \(f \), \(g \), and \(h \) are continuous on \([a,b]\), they are all integrable on \([a,b]\), by Theorem 33.2. Theorem 33.3 implies that \(\int_a^b h = \int_a^b f - \int_a^b g = 0 \). Theorem 33.9 then implies that there exists \(x \in [a,b] \) such that \(h(x) = \frac{1}{b-a} \int_a^b h = 0 \). Since \(h(x) = f(x) - g(x) \), this implies that \(f(x) = g(x) \).

34.11) Suppose that \(f \) is continuous on \([a,b]\).
Claim: If \(\int_a^b f(x)^2 dx = 0 \), then \(f(x) = 0 \) for all \(x \in [a,b] \).
Proof: Since \(f \) is continuous on \([a,b]\), Theorem 17.4 (part ii) implies that \(f^2 = ff \) is continuous on \([a,b]\). Theorem 33.4(part ii) then implies that \(f(x)^2 = 0 \) for all \(x \in [a,b] \). So, \(f(x) = 0 \) for all \(x \in [a,b] \).

34.12) Suppose that \(f \) is continuous on \([a,b]\).
Claim: If \(\int_a^b f(x)g(x) = 0 \) for any function \(g \) which is continuous on \([a,b]\), then \(f(x) = 0 \) for all \(x \in [a,b] \).
Proof: If \(\int_a^b f(x)g(x) = 0 \) for any function \(g \) which is continuous on \([a,b]\), then, since \(f \) is continuous on \([a,b]\), \(\int_a^b f(x)^2 dx = \int_a^b f(x)g(x) = f(x)^2 dx = 0 \). Problem 34.11, then implies that \(f(x) = 0 \) for all \(x \in [a,b] \).