Problem 1. (5 pts.) Let \(\mathbf{u} \) and \(\mathbf{v} \) be nonzero vectors in the plane. Find \(\mathbf{u} \cdot (\mathbf{v} - \text{proj}_\mathbf{u} \mathbf{v}) \).

Solution. Recall that the length of the projection of \(\mathbf{v} \) onto \(\mathbf{u} \) is \(|\mathbf{v}| \cos(\theta) \), where \(\theta \) is the angle between \(\mathbf{u} \) and \(\mathbf{v} \). Thus the length of the projection is \(\mathbf{u} \cdot \mathbf{v} \frac{1}{|\mathbf{u}|^2} \), and by multiplying this against a unit vector in the \(\mathbf{v} \) direction we get the projection: \(\text{proj}_\mathbf{u} \mathbf{v} = \mathbf{u} \cdot \mathbf{v} \frac{1}{|\mathbf{u}|^2} \mathbf{u} \). Thus,

\[
\mathbf{u} \cdot (\mathbf{v} - \text{proj}_\mathbf{u} \mathbf{v}) = \mathbf{u} \cdot (\mathbf{v} - \mathbf{u} \cdot \mathbf{v} \frac{1}{|\mathbf{u}|^2} \mathbf{u})
\]
\[
= \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v} \frac{1}{|\mathbf{u}|^2} \mathbf{u} \cdot \mathbf{u}
\]
\[
= \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v} \frac{|\mathbf{u}|^2}{|\mathbf{u}|^2}
\]
\[
= \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v}
\]
\[
= 0.
\]

Is this surprising? We can also deduce this intuitively: \(\text{proj}_\mathbf{u} \mathbf{v} \) is the part of \(\mathbf{v} \) that lies in the direction of \(\mathbf{u} \). Therefore, \(\mathbf{v} - \text{proj}_\mathbf{u} \mathbf{v} \) is the part of \(\mathbf{v} \) that is perpendicular to \(\mathbf{u} \). So \(\mathbf{u} \cdot (\mathbf{v} - \text{proj}_\mathbf{u} \mathbf{v}) \) is the dot product of \(\mathbf{u} \) with a vector perpendicular to it, which must be zero. ♦

Problem 2. (5 pts.) Find the equation of the plane passing through three points \(P(2,1,1), Q(3,-1,1), \) and \(R(4,1,-1) \).

Solution. To write the equation of a plane, we need a normal vector and a point. We have lots of points, so we just need to find a normal vector. Because \(P, Q, \) and \(R \) are in the plane, a vector perpendicular to both \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \) will be just the ticket. We can find this with the cross-product. \(\overrightarrow{PQ} = <1,-2,0> \) and \(\overrightarrow{PR} = <2,0,-2> \), so

\[
\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 0 \\ 2 & 0 & -2 \end{vmatrix} = 4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k},
\]

and our normal vector is \(\mathbf{n} = <4,2,4> \). Then, picking \(P \) as the point we use to write the equation for the plane, the plane is

\[
4(x-2) + 2(y-1) + 4(z-1) = 0.
\]

(This is because we define a plane to be all points \(S = (x,y,z) \) for which the vector from \(P \) to \(S \) is perpendicular to \(\mathbf{n} \). Thus \(\mathbf{n} \cdot \overrightarrow{PS} = 0 \), which leads the indicated equation.) ♦