Problem 1. (5 pts.) Consider the vector field \mathbf{F} and curve C (a circle with radius $\frac{1}{2}$) shown in the figure to the right, below. If D is the region enclosed by C and $|\mathbf{F}| = 2$ on C, what is $\iint_D |\text{curl} \mathbf{F}| \, dA$?

Problem 2. (5 pts.) If $\mathbf{F} = <x, y, z>$ and S is the part of the plane passing through the points $(2, 0, 0)$, $(0, 4, 0)$ and $(0, 0, 4)$ that lies in the first octant, find $\iint_S \mathbf{F} \cdot d\mathbf{S}$.