PROBLEM SET 8: RSA AND PRIME TESTING
(DUE NOVEMBER 15)

HARM DERKSEN

Problem 1. Do 31.7-1 in the book.

Solution: We have $\phi(319) = \phi(29 \cdot 11) = 28 \cdot 10 = 280$. We have to find d with $3d \equiv 1 \pmod{280}$. Now $280 = 3 \cdot 93 + 1$, so $3 \cdot 93 \equiv -1 \pmod{280}$ and $3 \cdot (-93) \equiv 1 \pmod{280}$. Take $d = (-93) + 280 = 197$. To encrypt $M = 100$, we compute $100^3 \pmod{319}$. Now $100^2 = 31 \cdot 319 + 111$ and $100 \cdot 111 = 11100 = 34 \cdot 319 + 254$. So finally $100^3 \equiv 100 \cdot 111 \equiv 254(\pmod{319})$.

Problem 2. Do 31.8-3 in the book.

Solution: If $\gcd(x - 1, n) = n$, then $x \equiv 1 \pmod{n}$. If $\gcd(x - 1, n) = 1$, then from $n \mid (x - 1)(x + 1)$ follows that n divides $x + 1$ and $x \equiv -1 \pmod{n}$. This shows that $\gcd(x - 1, n)$ is a nontrivial divisor of n. The proof that $\gcd(x + 1, n)$ is a nontrivial divisor goes similarly.

Solution: Consider the sequence modulo 73 as in figure 31.7(c) in the book. The first time, the value of y lies within the loop is when y is set to $x_8 = 814$. Then we have $y \equiv 11(\pmod{73})$. The loop modulo 73 has length four. We get $x_{12} = 84 \equiv 11(\pmod{73})$ again. The computation of $\gcd(y - x_12, 1387)$ (where y is set equal to x_8) yields $\gcd(814 - 84, 1387) = 73$. This is the first time that the divisor 73 will be printed. (the divisor 19 will be printed earlier).

Solution: From the formula for $\phi(n)$ it is clear that

$$\lambda(n) = \text{lcm}(\phi(p_1^{e_1}), \ldots, \phi(p_r^{e_r})) \text{ divides } \phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_r^{e_r}).$$

Suppose that a is relatively prime to n. Then a is relatively prime to $p_i^{e_i}$ for all i and

$$a^{\lambda(n)} \equiv 1(\pmod{p_i^{e_i}})$$

because $\lambda(n)$ is divisible by $\phi(p_i^{e_i})$. It follows that $a^{\lambda(n)} - 1$ is divisible by $p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} = n$ and $a^{\lambda(n)} \equiv 1(\pmod{n})$. Suppose that $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ is Carmichael. Now $p_i^{e_i - 1}$ divides $\phi(p_i^{e_i})$, $\lambda(n)$ and $n - 1$. But $p_i^{e_i - 1}$ also divides n, hence $p_i^{e_i - 1}$ divides $n - (n - 1) = 1$. This can only happen when $e_i = 1$ for all i, which means that n is squarefree. Suppose that $n = pq$ with $p < q$.

primes. If \(n \) is Carmichael then \(\lambda(n) \) divides \(n - 1 \), so \(p - 1 \) and \(q - 1 \) divide \(n - 1 \). Write \(n - 1 = a(q - 1) \). Clearly \(a > p \) because \(p(q - 1) = n - p < n \). So \(n - 1 \geq (p + 1)(q - 1) \) which implies that \(n - 1 \geq pq + q - p - 1 = n - 1 + (q - p) \).

We conclude that \(p \geq q \) which contradicts our assumption that \(p < q \).