MATH 513: LINEAR ALGEBRA
ASSIGNMENT 2
HARM DERKSEN

The **Challenging Problems** are due on Friday, September 21 at noon in class. You do **not** have to hand in the routine problems. On a quiz on Monday, September 24, similar problems may appear. It is optional to hand in the **Very Challenging Problems** (but the same deadline applies). These problems will be very hard. You can earn extra credit with the very challenging problems (but they will be graded more strictly).

Reading

For Friday, September 14, read Section 5. For Monday, September 17, read Section 6. For Wednesday, September 19, read Section 7.

Routine Problems

1. Do Section 3, page 25, Exercise 1(a),(b), and 2(a),(b).
2. Suppose that F_0 is a subfield of another field F. Show that F has the structure of a vector space over F_0. (For example, \mathbb{C} is a vector space over \mathbb{R}).
3. Do Section 3, page 25/26, Exercise 7(b), 8(b),(c).
4. Do Section 4, page 32/33, Exercise 1(a),(c),(d),(g) and 3(a),(b),(c),(d),(e),(g),(h).
5. Do Section 4, page 33, Exercise 4(a),(b),(d),(e),(g).

Challenging Problems

1. Do Section 4, page 33, exercise 7.
2. Do Section 4, page 33, exercise 8.
3. Show that $P(\mathbb{R})$ the set of polynomial functions on \mathbb{R} is a subspace of $\mathcal{F}(\mathbb{R})$ (the vector space of real-valued functions), then do Exercise 6 of Section 4, page 33.
4. (a) Suppose that \(A, D \) are points on in \(\mathbb{R}^2 \). Let \(Q \) be the point on the line segment \(AD \) such that \(\overrightarrow{AQ} = 2\overrightarrow{QD} \). Prove that \(Q = \frac{1}{3}A + \frac{2}{3}D \).

(b) Suppose that \(A, B, C \) form the vertices of a triangle. Let \(D \) be the midpoint of \(BC \), let \(E \) be the midpoint of \(AC \) and let \(F \) be the midpoint of \(AB \). Prove that the line segments \(AD, BE \) and \(CF \) meet in one point.

\(\text{(Hint: Take } Q \text{ on } AD \text{ such that } \overrightarrow{AQ} = 2\overrightarrow{QD}, R \text{ on } BE \text{ such that } \overrightarrow{BR} = 2\overrightarrow{RE} \text{ and } S \text{ on } CF \text{ such that } \overrightarrow{CS} = 2\overrightarrow{SF} \text{ and prove that } Q = R = S. \)"

Very Challenging Problems

1. In a vector space, an "infinite" set of vectors

\[
\{a_1, a_2, a_3, a_4, \ldots \}
\]

is said to be linearly independent if any finite subset of vectors is linearly independent. Show that the set

\[
\{\cos(x), \sin(x), \cos(2x), \sin(2x), \cos(3x), \sin(3x), \ldots \}
\]

is a linearly independent set of "vectors" in the \((\mathbb{R})\)-vector space \(\mathcal{F}(\mathbb{R}) \) of real valued functions on \(\mathbb{R} \).