0. Introduction

Throughout this paper R is a Noetherian ring of prime characteristic p. By (R, \mathfrak{m}, k), we indicate that R is a local ring with maximal ideal \mathfrak{m} and residue field $R/\mathfrak{m} = k$.

Also, we always use $q = p^e, Q = p^F, q_0 = p^{e_0}, q' = p^{e'}, q'' = p^{e''}$, etcetera, to denote varying powers of p with $e, E, e_0, e', e'' \in \mathbb{N}$.

Let M be an R-module. Then for any $e \geq 0$, we can derive a left R-module structure on the set M by $r \cdot m := r^{p^e}m$ for any $r \in R$ and $m \in M$. For technical reasons, we keep the original right R-module structure on M by default. We denote the derived R-R-bimodule by eM. Thus, in eM, we have $r \cdot m = m \cdot r^{p^e}$, which is equal to $r^{q}m$ in the original M. If R is reduced, then eR, as a left R-module, is isomorphic to $R^{1/q} := \{r^{1/p} \mid r \in R\}$. We use $\lambda^e(-), \lambda^e(-)$ to denote the left and right lengths of a bimodule. It is easy to see that $\lambda^e(\mathcal{M}) = q^{\alpha(R)}\lambda^e(\mathcal{M}) = q^{\alpha(R)}\lambda(M)$ for any finite length module M over (R, \mathfrak{m}, k), in which $\alpha(R) = \log_p[k : k^p]$.

We say that R is F-finite if 1R (or, equivalently, eR for all e) is finitely generated as an left R-module.

For any R-module M and e, we can always form a new R-module $F^e(M)$ by scalar extension via $F^e : R \rightarrow R$ by $r \mapsto r^{q}$. In other words, $F^e(M)$ has the R-module structure that is determined by the right R-module structure of $M \otimes_R \mathcal{M}$; and it is this R-module structure of $F^e(M)$ that we mean unless otherwise specified. If $h \in \text{Hom}_R(M, N)$, then we correspondingly have $F^e(h) : \text{Hom}_R(F^e(M), F^e(N))$. Sometimes, especially when both M and N are free, we may write $F^e(h)$ as $h^{[\alpha]}$.

A very important concept in studying rings of characteristic p is tight closure. Tight closure was first studied and developed by Hochster and Huneke in the 1980’s.
Definition 0.1 (Hochster-Huneke, [HH1]). Let R be a Noetherian ring of prime characteristic p and $N \subseteq M$ be R-modules. The tight closure of N in M, denoted by N^*_M, is defined as follows: An element $x \in M$ is said to be in N^*_M if there exists an element $c \in R^\circ$ such that $x \otimes c \in N_{M}^{[q]} \subseteq M \otimes_R eR$ for all $e \gg 0$, where R° is the complement of the union of all minimal primes of the ring R and $N_{M}^{[q]}$ denotes the (right) R-submodule of $F_{R}^c(M) = M \otimes_R eR$ generated by $\{x \otimes 1 \in M \otimes_R eR \mid x \in N\}$. The element $x \otimes 1 \in M \otimes_R eR$ is denoted by $x^q_M = x^q_M$. (By our convention on $F_{R}^c(M)$, we have $cx^q_M = x \otimes c \in N_{M}^{[q]}$.)

Definition 0.2 ([HH2]). Let R be a Noetherian ring of prime characteristic p, $q_0 = p^{e_0}$ and let $N \subseteq M$ be R-modules. We say $c \in R^\circ$ is a q_0-weak test element for $N \subseteq M$ if $c(N_M^* \setminus [q]) \subseteq N_{M}^{[q]}$ for all $q \geq q_0$. In case $N = 0$, we may simply call it a test element for M. By a q_0-weak test element, we simply mean a q_0-weak test element for all R-modules. If a q_0-weak test element c remains a q_0-weak test element under every localization, then we call c a locally stable q_0-weak test. Finally, in case $q_0 = 1$, we simply call c a test element or locally stable test element.

Definition 0.3 ([HH3]). Let R be a Noetherian ring of prime characteristic p, $c \in R$, and $N \subseteq M$ (finitely generated) R-modules. We say that $Q = p^E$ is a test exponent for c and $N \subseteq M$ (over R) if, for any $x \in M$, the occurrence of $cx^q \in N_{M}^{[q]}$ for one single $q \geq Q$ implies $x \in N_M^*$. In case $N = 0$, we may simply call it a test exponent for c and M.

Remark 0.4. (1) It is easy to check the following statements: To say $c \in R^\circ$ is a test element for $N \subseteq M$ is the same as to say c is a test element for $(0 \subseteq M/N)$ M/N. Similarly, to say $Q = p^E$ is a test exponent for c and $N \subseteq M$ is the same as to say Q is a test exponent for c and $(0 \subseteq M/N)$ M/N.

(2) However, by ‘a (q_0-weak) test element for an ideal I’, we usually mean ‘a (q_0-weak) test element for $I \subseteq R$’ rather than ‘a (q_0-weak) test element for $0 \subseteq I$’. Similarly, when we say ‘a test exponent for c and an ideal I’, we usually mean ‘a test exponent for c and $I \subseteq R$’ rather than ‘a test exponent for c and $0 \subseteq I$’.

Under mild conditions, test elements exist.

Theorem 0.5. Let R be F-finite or essentially of finite type over an excellent local ring (A, \mathfrak{n}) of characteristic p. Say $\sqrt{0^{[q_0]}} = 0$, where $\sqrt{0}$ is the nilradical of R.

(1) There exists a completely stable q_0-weak test element for all finitely generated R-modules. (See [HH2].)

(2) In fact, there exists a completely stable q_0-weak test element for all (not necessarily finitely generated) R-modules. (It suffices to prove the case where R (and hence A) is reduced. Under the assumption that R is F-finite, this was proved in the thesis of Haggai Elitzur, [El]. From this we can see the remaining case via a faithfully flat extension $R \rightarrow R \otimes_A \hat{A} \rightarrow R \otimes_A \hat{A}^\Gamma$, where \hat{A} is the \mathfrak{n}-adic completion of A and \hat{A}^Γ is a suitable (F-finite) Γ-extension of \hat{A}. See [HH2] for details about Γ-extensions.)
If there exists a test exponent for a locally stable test element \(c \in R^\circ \) and (finitely generated) \(R \)-modules \(N \subseteq M \), then the tight closure of \(N \) in \(M \) commutes with localization. This result is implicit in \([\text{McD}]\) and is explicitly stated in \([\text{HH3}]\) Proposition 2.3. Moreover, Hochster and Huneke showed in \([\text{HH3}]\) that the converse is true as below.

Theorem 0.6 \([\text{HH3}]\). Let \(R \) be a Noetherian ring of prime characteristic \(p \) with a given locally stable test element \(c \), and \(N \subseteq M \) finitely generated \(R \)-modules. Assume that the tight closure of \(N \) in \(M \) commutes with localization. Then there exists a test exponent for \(c \) and \(N \subseteq M \).

In \([\text{HH3}]\), Hochster and Huneke asked, among other questions, whether there exists a uniform test exponent for a given test element and all ideals generated by systems of parameters. This question has been recently answered positively by R. Y. Sharp.

Theorem 0.7 \([\text{Sharp, Sh, Theorem 3.2}]\). Let \((R, \mathfrak{m}) \) be an equidimensional excellent local ring of prime characteristic \(p \) and \(c \in R^\circ \). Then there exists a test exponent for \(c \) and all ideals generated by (partial or full) systems of parameters of \(R \).

In Theorem 2.4 we use the Artinian property of \(H^{\dim(R)}(R) \) and colon-capturing to give an alternate proof of the above Theorem 0.7.

Inspired by Sharp’s result, we then naturally ask whether there is a uniform test exponent for a given \(c \in R^\circ \) and all finitely generated \(R \)-modules with (finite length and) finite phantom projective dimension. While this question remains unsettled, we can give an affirmative answer in case \(R \) is Cohen-Macaulay or in case \(\dim(R) \leq 2 \).

Throughout this paper, we use \(\lambda(M) \) and \(\text{ppd}(M) \) to denote the length and phantom projective dimension of an \(R \)-module \(M \) respectively.

Theorem \((\text{Corollary 3.3, Corollary 3.4})\). Let \((R, \mathfrak{m}) \) be an equidimensional Noetherian excellent local ring of prime characteristic \(p \). Assume either that \(R \) is Cohen-Macaulay or \(\dim(R) \leq 2 \). Then, for any \(c \in R^\circ \), there is a test exponent for \(c \) and all \(R \)-modules \(M \) with \(\lambda(M) < \infty \), \(\text{ppd}(M) < \infty \).

For any finitely generated \(R \)-modules \(L, M \) such that \(\lambda(L) < \infty \), we denote

\[
e_{HK}(L, M) = \lim_{q \to \infty} \lambda(F^e(L) \otimes_R M)/q^\dim(R) = \lim_{q \to \infty} \lambda^r(L \otimes_R eM)/q^\dim(R),
\]

whose existence is ensured by a result of G. Seibert in \([\text{Se}]\). In case \(L = R/I \), we often denote \(e_{HK}(R/I, M) \) by \(e_{HK}(I, M) \) in spite of the remote possibility of confusion. It is easy to see that \(e_{HK}(I, M) = \lim_{q \to \infty} \lambda(M/I[q]M)/q^\dim(R) \) and the existence of \(e_{HK}(I, M) \) was first proved by P. Monsky in \([\text{Mo}]\).

Next we connect the above results about uniform test exponents for all modules of finite length and of finite phantom projective dimension to results about the \(F \)-rational signature of \(R \). Here we mention that \(r_R(M) \) has been defined and studied in \([\text{HY}]\). Throughout this paper, s.o.p. is short for “system of parameters.”

Definition 0.8. Let \((R, \mathfrak{m}) \) be a local ring of prime characteristic \(p \) and \(M \) a finitely generated \(R \)-module.
(1) Define (see [HY])

\[r_R(M) = \inf \{ e_{HK}(x, M) - e_{HK}(J, M) \mid x \text{ is a s.o.p. for } R \text{ and } (x) \subseteq J \}. \]

In particular, \(r_R(R) \) is called the \(F \)-rational signature of \(R \).

(2) In case \((R, m) \) is such that \(\text{ppd}(R/(x)) < \infty \) for every system of parameters \(x \) of \(R \) (e.g., \(R \) is an equidimensional homomorphic image of a Cohen-Macaulay ring or \(R \) is an equidimensional excellent ring), we define

\[r'_R(M) = \inf \{ e_{HK}(L, M) - e_{HK}(L/K, M) \mid \text{ppd}(L) < \infty, \lambda(L) < \infty, 0 \neq K \subseteq L \}. \]

Otherwise, we define \(r'_R(M) = 0 \). We call \(r'_R(R) \) the phantom \(F \)-rational signature of \(R \).

Theorem (Theorem 1.2). Let \((R, m) \) be a Noetherian local ring of prime characteristic \(p \). Assume there exists a common weak parameter test element for \(R \) and \(\hat{R} \) (e.g., \(R \) is excellent). Then \(R \) is \(F \)-rational \(\iff \hat{R} \) is \(F \)-rational \(\iff r'_R(M) > 0 \iff r'_R(M) > 0 \) for every (or, equivalently, some) finitely generated \(R \)-module with \(\dim(M) = \dim(R) \).

1. Some preliminary results about test exponents

We first observe the following easy lemma about test exponents, although it is not directly used in the sequel.

Lemma 1.1. Let \(R \) be a Noetherian ring of characteristic \(p \). For any \(b, c \in R^\circ \) and \(R \)-modules \(N \subseteq M \), the following are true.

1. If \(Q \) is a test exponent for \(bc \) and \(N \subseteq M \), then \(Q \) is a test exponent for \(c \) and \(N \subseteq M \).

2. If, for some \(q_0 = p^{e_0} \), \(Q \) is a test exponent for \(c^{q_0} \) and \(N^{[q_0]}_M \subseteq F^{e_0}_R(M) \), then \(Q \) is a test exponent for \(c \) and \(N \subseteq M \).

Proof. 1. If \(cx^q \in N^{[q]}_M \subseteq F^{e}_R(M) \) for some \(x \in M \) and \(p^e = q \geq Q \), then \(bce^q \in N^{[q]}_M \subseteq F^{e}_R(M) \) and hence \(x \in N^{*_e}_M \).

2. Suppose \(cx^q \in N^{[q]}_M \subseteq F^{e}_R(M) \) for some \(x \in M \) and \(p^e = q \geq Q \). Then \(c^{q_0}x^{q_0q} \in N^{[q_0]}_M \subseteq F^{e_0+e}_R(M) \), or, in other words, \(c^{q_0}(x^{q_0})^q \in (N^{[q_0]}_M)^{[q]}_{F^{e_0}_R(M)} \subseteq F^{e}_R(F^{e_0}_R(M)) \). This implies \(x^{q_0} \in (N^{[q_0]}_M)^{e_0}_F(M) \), which forces \(x \in N^{*_e}_M \).

For simplicity, we state the next two results (i.e., Lemma 1.2 and Lemma 1.3) in terms of test exponent for \(c \) and \((0 \subseteq M) \) only. It is an easy task to give the corresponding statements in terms of test exponents for \(c \) and \(N \subseteq M \).

Lemma 1.2. Let \(R \) be a Noetherian ring of characteristic \(p \) with the set of minimal primes \(\text{min}(R) = \{ P_1, P_2, \ldots, P_r \} \) so that \(\sqrt{0} = \cap_{i=1}^r P_i \). For any \(c \in R^\circ \) (or simply \(c \in R \)) and any (finitely generated) \(R \)-module \(M \), the following statements are true.

1. If \(Q \) is a test exponent for \(c + P_i \) and \(M/P_iM \) over \(R/P_i \) for all \(i = 1, 2, \ldots, r \), then \(Q \) is a test exponent for \(c + M \) and \(M \).

2. If \(Q \) is a test exponent for \(c + \sqrt{0} \) and \(M/\sqrt{0}M \) over \(R/\sqrt{0} \), then \(Q \) is a test exponent for \(c + M \).
Proof. (1). Suppose $cx^q = 0 \in F_R^e(M)$ for some $x \in M$ and $p^e = q \geq Q$. Then, $(c+P_i)(x+P_i M)^e_{M/P_i M} = 0 \in F_R^e(M/P_i M)$, which implies $x+P_i M \in 0^e_{M/P_i M}$ for every $i = 1, 2, \ldots, r$. This forces $x \in 0^e_M$ (see [HH1]).

(2). This follows similarly. \hfill \Box

The next lemma deals with module-finite and pure ring extensions. In particular, the lemma applies to any reduced Nagata (e.g., excellent) ring and its integral closure in its total quotient ring.

Lemma 1.3. Let $R \subseteq S$ be an extension of Noetherian rings of characteristic p, $c \in R$, and let M be a (finitely generated) R-module. Assume either (1) $R \subseteq S$ is module-finite, or (2) $R \subseteq S$ is a pure extension with a common weak test element in R. If Q is a test exponent for c and $0 \subseteq M \otimes_R S$ over S, then Q is a test exponent for c and $0 \subseteq M$.

Proof. Suppose $cx^q = 0 \in F_R^e(M)$ for some $x \in M$ and $p^e = q \geq Q$. Then $c(x \otimes 1)^q = 0 \in F_S^e(M \otimes_R S)$ and hence $x \otimes 1 \in 0^e_{M \otimes_R S}$, which implies $x \in 0^e_M$. \hfill \Box

The next lemma relies on the ‘colon-capturing’ property of tight closure, which is systematically studied in [HH1], Section 7.

Lemma 1.4. Let (R, m) be a Noetherian local ring of characteristic p, $\dim(R) = d$, and $x = x_1, x_2, \ldots, x_d$ and $y = y_1, y_2, \ldots, y_d$ be two systems of parameters such that $(y) \subseteq (x)$. For each $j = 1, 2, \ldots, d$, say $y_j = \sum_{i=1}^{d} x_i a_{ij}$ with $a_{ij} \in R$. Denote the resulting $d \times d$ matrix $(a_{ij})_{d \times d}$ by A. Then

1. $(y)^*:R (x) \supseteq (\det(A))^*$ and $(y)^*:R \det(A) \supseteq (x)^*$.

Further assume that (R, m) is equidimensional and, moreover, that R is either excellent or a homomorphic image of a Cohen-Macaulay ring. Then

2. $(y)^*:R (x) = ((y) + (\det(A)))^*$ and $(y)^*:R \det(A) = (x)^*$.

3. For any $c \in R$, if Q is a test exponent for c and $(y) \subseteq R$, then Q is a test exponent for c and $(x) \subseteq R$.

Proof. (1). This is straightforward (cf. [HH1] Proposition 4.1(b)(k)).

To prove (2) and (3), we may assume (R, m) is an equidimensional homomorphic image of a Cohen-Macaulay ring without loss of generality. (Indeed, in case R is equidimensional and excellent, it suffices to prove (2) and (3) for \widehat{R}.)

(2). This can be proved similarly as [HH1] Theorem 7.9. In case there is no explicit proof available in the literature, we mention that this can be proved, as usual, by lifting everything up to the Cohen-Macaulay ring of which R is a homomorphic image.

(3). Suppose $cx^q \in (x)^q$ for some $x \in R$ and $q \geq Q$. Then $c(\det(A)x)^q = \det(A)^q cx^q \in (y)^q$ and hence $\det(A)x \in (y)^*$, which implies $x \in (y)^*:R \det(A) = (x)^*$ by part (2) above. \hfill \Box

2. Test exponents for Artinian modules and
AN ALTERNATIVE PROOF OF SHARP’S THEOREM

We first show result about the existence of a test exponent for Artinian modules. Although the argument can be traced back to [HH3] (for modules of finite length), we include a proof here for the sake of convenience and completeness.

Proposition 2.1 (Compare with [HH3, Proposition 2.6]). Let \(R \) be a Noetherian ring of prime characteristic \(p \) and \(N \subseteq M \) be \(R \)-modules such that \(M/N \) is Artinian. Assume there exists \(d \in \mathbb{N} \) that is a \(q_0 \)-weak test element for \(N^q_M \subseteq F^q_R(M) \) for all \(q \gg 0 \). Then, for any \(c \in R^\circ \), there exists a test exponent for \(c \) and \(N \subseteq M \).

Proof. For every \(e \), let \(N_e = \{ u \in M \mid cu^q \in (N^q_M)^F_{F^q(M)} \} \). Then, as shown in the proof of [HH3, Proposition 2.6], \(N_1 \supseteq N_2 \supseteq \cdots \supseteq N_e \supseteq N_{e+1} \supseteq \cdots \supseteq N \) and hence there exists \(Q = p^E \) such that \(N_e = N_E \) for all \(e \geq E \).

Suppose \(cx^c_q \in N^q_M \) for some \(x \in M \) and \(q' \geq Q \). Then \(x \in N_{q'} \) and thus \(x \in N_e \) for all \(e \geq E \). This means \(cx^c_q \in (N^q_M)^F_{F^q(M)} \subseteq (N^q_M)^{q'}_{F^{q'}(M)} \) for all \(q \geq Q \). Consequently, \(dx^{q_0}x^{q_0} = d(cx^c)^{q_0} = (N^q_M)^{q_0}_{F^{q_0}(M)} \) for all \(q \gg Q \), which implies \(x \in N_M^* \).

In light of Theorem [0.3], we get the following consequence of Proposition 2.1.

Theorem 2.2. Let \(R \) be an algebra essentially of finite type over an excellent local ring of characteristic \(p \), \(c \in R^\circ \), and \(M \) an Artinian \(R \)-module. Then there exists a test exponent for \(c \) and \(M \).

Proof. This follows immediately from Theorem 0.5(2) and Proposition 2.1.

We may refine Proposition 2.1 as follows when the Artinian \(R \)-module is the highest local cohomology.

Proposition 2.3. Let \((R, \mathfrak{m})\) be a Noetherian local ring of prime characteristic \(p \) and \(c \in R^\circ \). Assume \((R, \mathfrak{m})\) has the colon-capturing property and there exists a \(q_0 \)-weak test element \(b \in R^\circ \) for all parameter ideals of \(R \). Then there exists a test exponent for \(c \) and \(0 \subset H^d_{\mathfrak{m}}(R) \).

Proof. Say \(\dim(R) = d \). Then \(H^d_{\mathfrak{m}}(R) = \lim_{\rightarrow} F^e_{(R)(R)} \). For any \(u \in R \) and any system of parameters \(\underline{x} = x_1, \ldots, x_d \) of \(R \), denote the image of \(u \) in \(H^d_{\mathfrak{m}}(R) \) by \([\frac{u}{(x_1, \ldots, x_d)}] \). Recall that, for any \(e \in \mathbb{N} \), there is a canonical isomorphism \(F^e_{R}(H^d_{\mathfrak{m}}(R)) \cong H^d_{\mathfrak{m}}(R) \), under which we may simply write \([\frac{u}{(x_1, \ldots, x_d)}]_{H^d_{\mathfrak{m}}(R)} = [\frac{u^q}{(x_1, \ldots, x_d)}] \). By colon-capturing, we see that \([\frac{u}{(x_1, \ldots, x_d)}] \notin 0^e_{H^d_{\mathfrak{m}}(R)} \) if and only if \(u \in (x_1, \ldots, x_d)_{R}^* \) (cf. [Sm, Proposition 2.5]). This implies that \(b \) is a weak test element for \(0 \subset H^d_{\mathfrak{m}}(R) \). (Indeed, for any \(\{ \frac{u}{(x_1, \ldots, x_d)} \} \notin 0^e_{H^d_{\mathfrak{m}}(R)} \), we have \(u \in (x_1, \ldots, x_d)_{R}^* \). Then \(bu^q \in (x_1, \ldots, x_d)_{R}^* \) for all \(q \geq q_0 \), which implies \(b[\frac{u}{(x_1, \ldots, x_d)}]_{H^d_{\mathfrak{m}}(R)} = [\frac{bu^q}{(x_1, \ldots, x_d)}] = 0 \in F^e_{R}(H^d_{\mathfrak{m}}(R)) \) for all \(q \geq q_0 \).

Consequently, \(b \) is a weak test element for \(0 \subset F^e_{R}(H^d_{\mathfrak{m}}(R)) \) for all \(e \in \mathbb{N} \). Thus, by Proposition 2.1, there exists a test exponent, say \(Q = p^E \), for \(c \) and \(H^d_{\mathfrak{m}}(R) \).

Now we are ready to give a new proof of Sharp’s result about a uniform test exponent for \(c \in R^\circ \) and all ideals generated by systems of parameters.
Theorem 2.4 (R. Y. Sharp, [Sh Theorem 3.2]). Let \((R, m)\) be an equidimensional excellent local ring of prime characteristic \(p\) and \(c \in R^0\). Then there exists a test exponent for \(c\) and all ideals generated by (partial or full) systems of parameters of \(R\).

Proof. Say \(\dim(R) = d\). By Proposition 2.3 there is a test exponent \(Q\) for \(c\) and \(H^n_m(R)\). Here we keep the same usage of \(\lfloor \frac{u}{(x_1, \ldots, x_d)} \rfloor\) as in the above proof of Proposition 2.3.

Now, it suffices to show that \(Q\) is a test exponent for \(c\) and \((x_1, \ldots, x_i) \subseteq R\) for any (partial or full) system of parameters \(\underline{x} = x_1, \ldots, x_i\) of \(R\). But, then, it suffices to verify the case where \(\underline{x} = x_1, \ldots, x_d\) is any full system of parameters of \(R\) via a standard technique (see the last paragraph of the proof of [Sh Theorem 3.2]).

Finally, for any \(u \in R\) and \(q \geq Q\), suppose \(cu^q \in \langle x \rangle^{[q]} = (x_1^q, \ldots, x_d^q)\). This implies \(c[\lfloor \frac{u}{(x_1, \ldots, x_d)} \rfloor]^q_{H^n_m(R)} = 0 \in F^e_R(H^d_m(R))\). Thus, by the choice of \(Q\), \(\lfloor \frac{u}{(x_1, \ldots, x_d)} \rfloor \in 0^*_{H^n_m(R)}\), which forces \(u \in (x_1, \ldots, x_d)^*_R\) by colon-capturing as in Proposition 2.3 (cf. [Sm, Proposition 2.5]). \(\square\)

Next, we state a corollary of the theorem above.

Corollary 2.5. Let \((R, m)\) be an equidimensional excellent local ring of prime characteristic \(p\) and \(c \in R^0\). Then there exists a test exponent for \(c/1\) and all ideals generated by (partial or full) systems of parameters of \(R_P\) (over \(R_P\)) for all \(P \in \text{Spec}(R)\).

Proof. By Theorem 2.4 there is a test exponent, \(Q = p^F\), for \(c\) and all ideals generated by (partial or full) systems of parameters of \(R\). Fix an arbitrary \(P \in \text{Spec}(R)\). It suffices to show that \(Q\) is a test exponent for \(c/1\) and all ideals generated by (partial or full) systems of parameters of \(R_P\) (over \(R_P\)). Then, again, it suffices show that \(Q\) is a test exponent for \(c\) and all ideals generated by (full) systems of parameters of \(R_P\) (over \(R_P\)).

Say \(\dim(R_P) = h\). Then by prime avoidance, there exists \(\underline{x} = x_1, \ldots, x_h \in P\) such that \(\underline{x}\) is a (partial) system of parameters of \(R\). Then, for any \(0 < n \in \mathbb{N}\), \(\underline{x}^n := x^n_1, \ldots, x^n_h\) is also a (partial) system of parameters of \(R\) and, moreover, \(x^n_1/1, \ldots, x^n_h/1\) is a (full) system of parameters of \(R_P\).

Let \(y = y_1, \ldots, y_h\) be any full system of parameters of \(R_P\). We need to prove that \(Q\) is a test exponent for \(c/1\) and \((y) \subseteq \langle y \rangle_{R_P}\) in order to finish the proof. As there exists a positive integer \(n \in \mathbb{N}\) such that \((x^n_1, \ldots, x^n_h)^P \subseteq \langle y \rangle\), it suffices to prove that \(Q\) is a test exponent for \(c/1\) and \((x^n_1, \ldots, x^n_h)^P \subseteq \langle y \rangle_{R_P}\) by Lemma 1.4(3).

Now suppose \((c/1)v^q \in (x^n_1, \ldots, x^n_h)^{[q]}_{R_P}\) for some \(v \in R_P\) and \(q \geq Q\). Without loss of generality, we may assume \(v = u/1\) with \(u \in R\). That is, there exists \(s \in R\) such that \(scu^q \in (x^n_1, \ldots, x^n_h)^{[q]}\). Hence \(c(su)^q \in (x^n_1, \ldots, x^n_h)^{[q]}_{R}\), which implies \(su \in (x^n_1, \ldots, x^n_h)^*_R\). Therefore, \(v = u/1 \in (x^n_1, \ldots, x^n_h)^*_R \subseteq \langle (x^n_1, \ldots, x^n_h)^P \rangle_{R_P}^*\). \(\square\)

3. Modules with finite (phantom) projective dimension

Question 3.1. Assume \((R, m)\) is an equidimensional local ring of prime characteristic \(p\) that is either excellent or a homomorphic image of a Cohen-Macaulay ring. For
a given \(c \in R^c \), does there exist a test exponent for \(c \) and all finitely generated \(R \)-modules of finite phantom projective dimension?

If \(R \) is Cohen-Macaulay, then it is known that phantom projective dimension is the same as projective dimension. For this reason, the following theorem may be viewed as a partial answer to the above question.

Theorem 3.2. Let \((R, \mathfrak{m}) \) be a Cohen-Macaulay Noetherian local ring of prime characteristic \(p \) with \(\dim(R) = d \). Fix any \(c \in R \), if \(Q = p^E \) is a test exponent for \(c \) and all ideals generated by (full) systems of parameters of \(R \), then \(Q \) is a test exponent for \(c \) and all \(R \)-modules of finite length and of finite projective dimension.

Proof. Let \(M \neq 0 \) be a typical \(R \)-module such that \(\lambda(M) < \infty \) and pd(\(M \)) < \(\infty \). Suppose \(cu^d = 0 \in F^e(M) \) for some \(u \in M, q' \geq Q \). We need to show \(u \in 0_M \).

Fix a minimal projective resolution \(G_\bullet \) of \(M \) as follows

\[
G_\bullet : \quad 0 \rightarrow G_d \xrightarrow{\phi_d} G_{d-1} \xrightarrow{\phi_{d-1}} \cdots \xrightarrow{\phi_1} G_1 \xrightarrow{\phi_0} G_0 \rightarrow 0.
\]

Then choose a system of parameters \(\underline{x} \) of \(R \) such that \((\underline{x}) \subseteq \text{Ann}_R(u) \) and construct the Koszul complex \(K_\bullet(\underline{x}, R) \) as follows

\[
K_\bullet(\underline{x}, R) : \quad 0 \rightarrow K_d \xrightarrow{\psi_d} K_{d-1} \xrightarrow{\psi_{d-1}} \cdots \xrightarrow{\psi_1} K_1 \xrightarrow{\psi_0} K_0 \rightarrow 0,
\]

where \(K_i = R^{(d)} \). In particular, \(\psi_d \) is represented by matrix \((x_1, x_2, \ldots, x_d) \) and the 0-th homology of \(K_i(\underline{x}, R) \) is \(R/(\underline{x}) \). Thus the \(R \)-linear map \(h : R/(\underline{x}) \rightarrow M = H_0(G_\bullet) \) sending the class of 1 to \(u \) can be lifted to a chain map \(g : K_\bullet(\underline{x}, R) \rightarrow G_\bullet \).

Denote \(g_0(1) = y \). Then \(cy^d \in (\text{Image}(\phi_1))^{[q]}_{G_0} \) and we now only need to show \(y \in (\text{Image}(\phi_1))^{[q]}_{G_0} \).

For every \(q \), there is an induced \(R \)-linear chain map \(g^{[q]} : F^e(K_\bullet(\underline{x}, R)) \rightarrow F^e(G_\bullet) \).

Now the fact that \(cy^d \in (\text{Image}(\phi_1))^{[q]}_{G_0} \) (i.e., \(cu^{q'} = 0 \)) implies that the chain map \(cg^{[q']}_{d-1} \) is homotopic to the zero chain map. In particular, there exists \(\delta_{d-1} \in \text{Hom}_R(F^e(K_{d-1}), F^e(G_d)) \) such that \(cg^{[q']}_{d-1} = \delta_{d-1} \circ \psi^{[q']}_d \). Applying \(\text{Hom}_R(-, R) \), we get

\[
c(\text{Image}(\text{Hom}(g_d, R)))^{[q]}_{K_d} = \text{Image}(\text{Hom}(cg^{[q']}_{d-1}, R))
\]

\[
= \text{Image}(\text{Hom}(\psi^{[q']}_{d-1}, R)) = (\underline{x})^{[q]}_R,
\]

which implies \(\text{Image}(\text{Hom}(g_d, R)) \subseteq (\underline{x})^{[q]}_R \) since \(q' \geq Q \). That is to say that there exists \(b \in R^c \) such that

\[
\text{Image}(\text{Hom}(bg^{[q]}_d, R)) = b \text{Image}(\text{Hom}(g^{[q]}_d, R))
\]

\[
= b(\text{Image}(\text{Hom}(g_d, R)))^{[q]}_R \subseteq (\underline{x})^{[q]}_R = \text{Image}(\text{Hom}(\psi^{[q]}_d, R))
\]

for all \(q \gg 0 \). Therefore, the chain maps

\[
\text{Hom}(bg^{[q]}_d, R) : \text{Hom}(F^e(G_\bullet), R) \rightarrow \text{Hom}(F^e(K_\bullet(\underline{x}, R)), R)
\]

are homotopic to 0 for all \(q \gg 0 \). Hence, there exist \(\epsilon^{[q]}_1 \in \text{Hom}_R(F^eG_1, F^e(K_0)) \) such that \(\text{Hom}(bg^{[q]}_d, R) = \epsilon^{[q]}_1 \circ \text{Hom}(\psi^{[q]}_d, R) \) for all \(q \gg 0 \). This, after going through
Hom(−, R), would in turn imply

\[by^q \in b(\text{Image}(g_0))_{G_0}^{[q]} = \text{Image}(b|_{G_0}^{[q]}) \subseteq \text{Image}(\phi_1^{[q]}) = (\text{Image}(\phi_1))_{G_0}^{[q]}, \]

for all \(q \gg 0 \). We now conclude that \(y \in (\text{Image}(\phi_1))_{G_0}^{[q]} \) and the proof is complete. We also remark that the above argument of using homotopy to determine membership in the tight closure has appeared in [Ab].

Corollary 3.3. Let \((R, m)\) be a Cohen-Macaulay Noetherian excellent local ring of prime characteristic \(p \). Then, for any \(c \in R^\circ \), there is a test exponent for \(c \) and all \(R \)-modules of finite length and of finite (phantom) projective dimension.

Proof. This follows from Theorem 0.7 and Theorem 3.2.

We also notice that Question 3.1 reduces to the Cohen-Macaulay case if \(\dim(R) \leq 2 \).

Corollary 3.4. Let \((R, m)\) be an equidimensional excellent Noetherian local ring of prime characteristic \(p \) with \(\dim(R) \leq 2 \). Then, for any given \(c \in R^\circ \), there exists a test exponent for \(c \) and all \(R \)-modules of finite length and of finite phantom projective dimension.

Proof. By [HH1, Definition 9.1], we observe that any \(R \)-module of finite length and of finite phantom projective dimension over \(R \) remains so after we extend the scalar to the integral closure of \(R/P \) in its fraction field for every \(P \in \min(R) \). Therefore, by Lemma 1.2 and Lemma 1.3, we may assume \(R \) is normal without loss of generality. (We may assume \(R \) is complete as well.) But now \(R \) is excellent Cohen-Macaulay and the claim follows from Corollary 3.3.

4. A connection with \(F \)-rational signature

The \(F \)-rational signature, \(r_R(M) \), has been studied in [HY]. In this section, we investigate the behavior of \(r'_R(M) \) (cf. Definition 0.8(2)). We start with a remark.

Remark 4.1. First, from definition, it is immediate to see that \(r(M) \geq r'(M) \) for any finitely generated \(R \)-module \(M \).

Second, suppose that \(\text{ppd}(R/(x)) < \infty \) for every system of parameters \(x \) of \(R \). Then we observe that \(r'_R(M \otimes_R \hat{R}) \leq r'_R(M) \) for any finitely generated \(R \)-module \(M \). The reason is that any \(R \)-module of finite length and of finite phantom projective dimension remain so considered as an \(\hat{R} \)-module.

It turns out that \(r(M) \) and \(r'(M) \) behave quite similarly. For example, assuming \(R \) is excellent, the positiveness of \(r'(R) \) characterizes \(F \)-rationality.

Theorem 4.2. Let \((R, m)\) be a Noetherian local ring of prime characteristic \(p \). And we use \(M \) to denote a finitely generated \(R \)-module. Consider

(1) \(r(R) > 0 \); (1') \(r'(R) > 0 \);
(2) \(r(M) > 0 \) for every \(M \) with \(\dim(M) = \dim(R) \);
(2') \(r'(M) > 0 \) for every \(M \) with \(\dim(M) = \dim(R) \);
(3) \(r(M) > 0 \) for some \(M \); (3') \(r'(M) > 0 \) for some \(M \);
(4) \(\hat{R} \) is \(F \)-rational;
It remains to show (1) ⇔ F is turn implies statements (1), (1'), (2), (2'), and (3). A common parameter test element for (2), (2'), (3), or (3') will imply (4).

The implication (4) ⇒ (5) is straightforward to see that (3') implies R is an F-rational domain, which in turn implies statements (1), (1'), (2), (2'), and (3).

Now it remains to prove (4) ⇒ (3') in order to complete the proof. So we assume \hat{R} is F-rational. Thus R is Cohen-Macaulay and, by Remark 4.1, $r'_R(M) = 0$, for every finitely generated R-module M (see [HY, Theorem 4.1]). Thus any single one of (1), (1'), (2), (2'), (3), or (3') will imply (4).

It is straightforward to see that (3') implies R is an F-rational domain, which in turn implies statements (1), (1'), (2), (2'), and (3).

Now it remains to prove (4) ⇒ (3') in order to complete the proof. So we assume \hat{R} is F-rational. Thus R is Cohen-Macaulay and, by Remark 4.1, $r'_R(M) = 0$, for every finitely generated R-module M. As a result, we may assume R is a complete F-rational domain (hence Cohen-Macaulay). But now it is enough to show $r'(R) > 0$ as $r'(M) = \text{rank}_R(M)r'(R)$ where $\text{rank}_R(M)$ denotes the torsion-free rank of M over R.

One of the ingredients in this proof is the following Fact, which is explicitly stated in [HY, Theorem 3.3].

Fact. Let (R, m) be a complete local domain of prime characteristic p. There exist $c \in R^*, c' \in R^*$ and $q'' = p^{c''}$ such that, for any R-modules L with $\lambda(L) < \infty$, if q''' is a test exponent for cc' and $0 \subseteq L$, then $e_{HK}(L, R) - e_{HK}(L/K, R) \geq 1/(q''q''')^{\dim(R)}$ for every K such that $0^*_L \not\supseteq K \subseteq L$.

Now we come back to the proof of Theorem 4.2. Remember that \hat{R} is a complete F-rational local ring (hence a Cohen-Macaulay domain) now. Choose $c, c' \in R^*$ as in the above Fact. In [Ab], Aberbach has shown that $0^*_L = 0$ for every \hat{R}-module L such that $\text{ppd}_R(L) < \infty$. Also, from Corollary 3.3, there is a test exponent, say q'', for cc' and all \hat{R}-modules L such that $\text{ppd}_R(L) < \infty$ and $\lambda(L) < \infty$, which forces $e_{\hat{HK}}(L, \hat{R}) - e_{\hat{HK}}(L/K, \hat{R}) \geq 1/(q''q''')^{\dim(\hat{R})}$ for every $0 \neq K \subseteq L$ by the above Fact. Now it follows from Definition 0.8 that $r'(R) \geq 1/(q''q''')^{\dim(R)} > 0$. □

References

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109

E-mail address: hochster@umich.edu

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303

E-mail address: yyao@gsu.edu