Math 217: §2.1 Linear Transformations
Professor Karen Smith

Key Definition: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a map (i.e., a function) from \mathbb{R}^n to \mathbb{R}^m satisfying the following:

- $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ (that is, "T respects addition").
- $T(a\vec{x}) = aT(\vec{x})$ for all $a \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$ (that is, "T respects scalar multiplication").

A. Suppose that $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ is a linear transformation. Suppose $T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$.

1. Do we also know the value of $T\begin{pmatrix} 1 \\ 1 \end{pmatrix}$? Find it, using only the definition of linear transformation given above. What about $T\begin{pmatrix} 2 \\ 0 \end{pmatrix}$? $T\begin{pmatrix} 2 \\ 1 \end{pmatrix}$?

Solution note: $T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $T\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, $T\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

2. Do we know the value of T on any linear combination $a\vec{e}_1 + b\vec{e}_2$ where \vec{e}_i are the standard unit column vectors in \mathbb{R}^2? Find it, using only the definition of linear transformation given above.

Solution note: Yes. $T(a\vec{e}_1 + b\vec{e}_2) = T(a\vec{e}_1) + T(b\vec{e}_2) = aT(\vec{e}_1) + bT(\vec{e}_2) = a\begin{pmatrix} 4 \\ 2 \end{pmatrix} + b\begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 4a - 2b \\ 2a - 2b \end{pmatrix}$.

3. What is $T\begin{pmatrix} a \\ b \end{pmatrix}$? Prove it.

Solution note: Done in (2) since $T\begin{pmatrix} a \\ b \end{pmatrix} = T(a\vec{e}_1 + b\vec{e}_2) = \begin{pmatrix} 4a - 2b \\ 2a - 2b \end{pmatrix}$.

4. Find a matrix A such that $T\vec{x} = A\vec{x}$. Is it unique?

Solution note: $A = \begin{pmatrix} 4 & -2 \\ 2 & -2 \end{pmatrix}$. This is because $T\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4a - 2b \\ 2a - 2b \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 2 & -2 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}$. It is unique, because its first column is determined by where T sends \vec{e}_1 and its second column is determined by where T sends \vec{e}_2.
5. What does your matrix have to do with $T(\vec{e}_1)$ and $T(\vec{e}_2)$?

Solution note: The columns of A are the column $T(\vec{e}_1)$ and $T(\vec{e}_2)$.

B. Let $\vec{e}_1, \ldots, \vec{e}_n$ be the standard unit vectors for \mathbb{R}^n.

1. If we know the values of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^d$ on each \vec{e}_i, do we know the value for any $\vec{x} \in \mathbb{R}^n$? Why? Discuss with your tablemates.

2. Prove that $T(\vec{x}) = A\vec{x}$ where A is the $d \times n$ matrix formed by the vectors $T(\vec{e}_1), \ldots, T(\vec{e}_n)$.

Solution note:

1). Yes. Every vector is a linear combination of the \vec{e}_j, so the image will be the corresponding linear combination of the $T(\vec{e}_j)$.

2). We restate this as a **Theorem:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let A be the $m \times n$ matrix whose j-th column is the $m \times 1$ vector $T(\vec{e}_j)$ for \vec{e}_j the $n \times 1$ column vector which has all zeros except in the j-th spot, where there is a 1.

Then for all $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, we have

$$T(\vec{x}) = A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

That is, every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ can be represented by a matrix multiplication by some $m \times n$ matrix A. The columns of A are easy to find: they are the images under T of the standard unit vectors in \mathbb{R}^n.

Proof: We can write $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \cdots + x_n \vec{e}_n$ for some scalars x_i. Using the definition of linear transformation, we have

$$T(\vec{x}) = T(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \cdots + x_n \vec{e}_n) = T(x_1 \vec{e}_1) + T(x_2 \vec{e}_2) + \cdots + T(x_n \vec{e}_n) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + \cdots + x_n T(\vec{e}_n),$$

which is also the matrix product

$$\begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) & \cdots & T(\vec{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

QED.

This is a crucial idea. Be sure you understand exactly how a linear transformation can be described using matrix multiplication, and how to get the matrix.
Linear transformations in geometry

C. Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be dilation by a factor of three.
 1. Give a geometric reason that S is a linear transformation using the definition.
 2. What is the associated matrix A so that $S(\vec{v}) = A\vec{v}$?
 3. What about dilation (or contraction) by an arbitrary factor?

D. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation in the counter-clockwise direction by 90° (fixing the origin).
 1. Give a geometric explanation why L is a linear transformation using the definition.
 2. What is the associated matrix A so that $L(\vec{v}) = A\vec{v}$?
 3. What about rotation through an arbitrary angle θ? To write the matrix, you need to remember your high school trig.

E. Let $M : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the x-axis.
 1. Show that M is linear by writing down a formula for it explicitly.
 2. What about reflection over the line $y = x$? Is this a linear transformation? If so, find its matrix.

F. Let $Q : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that stretches vertically by a factor of two and contracts horizontally by a factor of 3.
 1. Show that Q is linear by writing down a formula for it explicitly.
 2. What about arbitrary (but different) scale factors vertically and horizontally? What happens if they are negative?

H. Bonus: Think geometrically: Do you think that reflection over an arbitrary line through the origin is a linear transformation? Can you write down its matrix?