Algebraic Closure. A field K is algebraically closed if every polynomial $g(x) \in K[x]$ has a root.

1. Show that if K is algebraically closed, then there is no irreducible polynomial of degree greater than one over K.
2. Show that any field F is contained in a field \bar{F} which is algebraically closed. [Hint: If F is not algebraically closed, start by considering $F[x]/(g(x))$ where g is irreducible over F.]
3. Show that if $F \subset K$, where K is algebraically closed, there is a unique subfield \bar{F} of K containing F which is also algebraically closed. Such a field is called an algebraic closure of F.
4. Show that the algebraic of F is unique up to isomorphism fixing F. [Hint: start by showing that if K and K' are both algebraic closures, show that for each $\alpha \in K$, we can chose an element β in K' such that $F(\alpha) \cong F(\beta)$ by an isomorphism fixing F.] We denote any algebraic closure of F by \bar{F} and call it “the” algebraic closure of F.

2. Separable Extensions. An irreducible polynomial $f \in F[x]$ is separable if it has no multiple roots in any field extension. Let f be an irreducible polynomial in $F[x]$.

1. Show f is separable unless the derivative f' is 0.
2. An algebraic field extension $F \subset K$ is separable if for every $\alpha \in K$, the minimal polynomial of α over F is separable. Show that if F has characteristic zero, then algebraic extension field of F is separable over F.
3. Let $F = \mathbb{F}_p(t)$. Show that the polynomial $g(x) = x^p - t \in F[x]$ is irreducible but not separable.
4. With g as in (3), compute the splitting field K of g over F. How many distinct roots does g have? What is the degree of K over F. Find its Galois group.
5. Find a necessary and sufficient condition (not involving the derivative) for a polynomial to be non-separable over F.

3. Normal Extensions. An extension $F \subset K$ of fields is normal if for any polynomial $g \in F[x]$ which has a root in K, all roots of g are in K.

1. Show that a quadratic extension is always normal.
2. Which as the following extensions are normal: $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{7})$; $\mathbb{Q} \subset \mathbb{Q}(\eta_{11})$ where η_{11} is a primitive 11-th root of unity; $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$ where ω is a primitive third root of unity.
3. Show that if $F \subset K$ is a splitting field for some polynomial $g \in F[x]$, then $F \subset K$ is normal.

4. Let F be any field, and let H be a finite subgroup of the group F^\times of order n. Prove that H is cyclic, and consists of the n-th roots of unity in F.

5. Let $f(x) \in F[x]$ be a polynomial of degree n, and let K be a splitting field, which is to say, let $K = F(\alpha_1, \ldots, \alpha_n)$ where the $\alpha_i \in \bar{F}$ are roots of F in an algebraic closure of F.

1. Show that $[K : F] \leq n$!
2. Show that if equality holds in (1), then the Galois group is isomorphic to S_n.

6. Show that the Galois group of $t^4 - 2$ over \mathbb{Q} is isomorphic to the dihedral group D_4 of symmetries of a square.

Artin: 13.6: # 5, #, 7, #11; 13.8: #2; 14.1 #6, #10, #17, #18.