Problem 1. See Shafarevich. **Problem 2.** ((a) \implies (b)) Suppose $\phi: X \to Y$ is a morphism, and $x \in X$. We may assume U is a neighborhood of x with $\phi(U) \subseteq U_0 \subseteq \mathbb{P}^m$ such that

$$\phi|_U : U \to Y \cap U_0 \subseteq U_0 \simeq \mathbb{A}^n$$

is given by

$$y \mapsto (\phi_1(y), \ldots, \phi_m(y))$$

where $\phi_1, \ldots, \phi_m \in \mathcal{O}_X(U)$.

Clearly the coordinate functional t_i pull back to ϕ_i, which by definition, are regular at $x \in U$.

((a) and (b) \implies (c)) Shrinking U if necessary so that it is contained in some chart of X, say $X \cap U_0$, we may write $\phi_i(y) = \frac{p_i(y)}{q_i(y)}$ for all $y \in U$, where p_i, q_i are in regular functions on $\overline{X} \cap U_0$. Homogenizing both, and multiplying by a power of X_0 on the numerator or denominator (if necessary), we can assume p_i, q_i are homogeneous polynomials of the same degree d_i in the coordinates x_0, \ldots, x_n of \mathbb{P}^n with $q_i(y) \neq 0$ for $y \in U$. Let $Q = \prod_{i=1}^{m} q_i$, which is homogeneous of degree $d = \prod_{i=1}^{m} d_i$. For each $y \in U$, we have $Q(y) \neq 0$ and it follows that

$$\phi(y) = [1 : \phi_1(y) : \cdots : \phi_m(y)] = [1 : \frac{p_1(y)}{q_1(y)} : \cdots : \frac{p_m(y)}{q_m(y)}] = [Q(y) : (Q(y) \frac{p_1(y)}{q_1(y)}) : \cdots : (Q(y) \frac{p_m(y)}{q_m(y)})].$$

Since $F_i := Q \cdot \frac{p_i}{q_i} = p_i \cdot \prod_{j \neq i} q_j$ and $F_0 = Q$ are homogeneous polynomials of degree d, we have shown that ϕ satisfies (c).

(c.) \implies (d.) Note first that ϕ is certainly continuous: if $Z = \mathbb{V}(f_1, \ldots, f_k) \cap Y$ for homogeneous polynomials f_1, \ldots, f_k in the coordinates y_0, \ldots, y_m of \mathbb{P}^m, then $\phi^{-1}(Z)$ locally looks like $X \cap \mathbb{V}(f_1(F_0, \ldots, F_m), \ldots, f_k(F_0, \ldots, F_m))$ for homogeneous polynomials F_0, \ldots, F_m of the same degree on \mathbb{P}^n. Each $f_j(F_0, \ldots, F_m)$ is thus a homogeneous polynomial on \mathbb{P}^n, and being closed is a local property. Thus, $\phi^{-1}(Z)$ is closed, and ϕ is continuous.

Next, suppose that $\psi \in \mathcal{O}_Y(V)$ for some open subset V of Y, and U is an open subset of X with $\phi(U) \subseteq V$. Let $x \in U$. Since the rational function ψ is regular at $\phi(x)$, we may write $\psi(y) = \frac{p(y)}{q(y)}$ for all y in a neighborhood of $\phi(x)$ and some homogeneous polynomials p, q on \mathbb{P}^m of the same degree with $q(y) \neq 0$. Thus, for all z in a neighborhood of x (since ϕ is continuous), we may write $\psi \circ \phi(z) = \frac{p(F_0(z), \ldots, F_m(z))}{q(F_0(z), \ldots, F_m(z))}$ for homogeneous polynomials F_0, \ldots, F_m on \mathbb{P}^n of the same degree. Since $p(F_0, \ldots, F_m)$ and $q(F_0, \ldots, F_m)$ are homogeneous polynomials of the same degree on \mathbb{P}^n, it follows that $\psi \circ \phi$ is regular at x. We conclude that $\psi \circ \phi \in \mathcal{O}_X(U)$.

Consider any affine covers $\{U_\lambda\}$ of X and $\{V_\mu\}$ of Y with each $\phi(U_\lambda)$ contained in some V_μ. From above, we see that pulling back under ϕ induces a ring homomorphism $\mathcal{O}_Y(V_\mu) \to \mathcal{O}_X(U_\lambda)$ whenever $\phi(U_\lambda) \subseteq V_\mu$. Under the equivalence of categories, we conclude that $\phi|_{U_\lambda}$ is a regular map from U_λ to V_μ (in the sense of affine varieties).
Problem 4. Following the hint, we first treat the case where \(H \) is defined by the vanishing of a linear polynomial on \(\mathbb{P}^n \). After a linear change of coordinates, we may assume \(H = \mathcal{V}(x_0) \). Then \(\mathbb{P}^n \setminus H \cong \mathbb{A}^n \) is one of the affine open sets in the standard cover of \(\mathbb{P}^n \).

Now suppose \(H = \mathcal{V}(f) \) where \(f \) is a homogeneous polynomial of degree \(d > 1 \). Write \(f = \sum_I c_I x^I \), where \(c_I \in k \) and the sum ranges over all of the monomials \(x^I \) of degree \(d \) on \(\mathbb{P}^n \). Let

\[
\nu_d : \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{d}-1}
\]

be the \(d \)-th Veronese embedding. Let \(\ldots, z_I, \ldots \) be the coordinates on \(\mathbb{P}^{\binom{n+d}{d}-1} \). Then we have \(f = F \circ \nu_d \), where \(F = \sum_I c_I z_I \) is a linear polynomial on \(\mathbb{P}^{\binom{n+d}{d}-1} \). Thus, \(\nu_d \) identifies \(\mathbb{P}^n \setminus H \) with a closed subset of \(\mathbb{P}^{\binom{n+d}{d}-1} \setminus \mathcal{V}(F) \cong \mathbb{A}^{\binom{n+d}{d}-1} \).

Problem 5. Suppose the curve is defined by \(f(x, y, z) \) and the line by \(ax + by + cz \). The intersection is defined by the two equations. To find the intersection, we do a linear substitution (say, if \(c \neq 0 \), we eliminate \(z \)), to arrive at a homogeneous polynomial of degree \(d \) in two variables. But every homogeneous polynomial in two variables over an algebraically closed field factors into linear polynomials\(^1\). There are thus exactly \(d \) intersection points, unless some of these linear factors coincide. Thus we expect, for a typical line, exactly \(d \) intersection points, but sometimes, for special lines (which are tangent to the curve) there will be fewer. The points at infinity are just the points on the line at infinity, so we expect \(d \) points at infinity on a degree \(d \) curve. To get an example of such: \((x - y)(x - 2y) \ldots (x - dy) + z^d \) is an irreducible curve of degree \(d \), which ”at infinity” (chosen so \(U_2 \) is the finite chart), has \(d \) distinct points: \([1 : 1 : 0], [2 : 1 : 0], \ldots, [d : 1 : 0]\) in \(\mathcal{V}(z) \), the hyperplane at infinity.

\(^1\)Dehomogenize, factor the one variable polynomial, rehomogenize.
Problem 6. Consider \mathbb{P}^n as $\mathbb{P}(V)$ for an $(n+1)$-dimensional vector space V over k. Then $x_1, \ldots, x_n \in \mathbb{P}(V)$ correspond to lines L_1, \ldots, L_n in V. We can find at least one linear subspace W of V with $\dim(W) = n$ and $L_1 + \cdots + L_n \subseteq W$, so that $\mathbb{P}(W)$ is a hyperplane containing x_1, \ldots, x_n. If the x_1, \ldots, x_n are in general position, i.e. $\dim(L_1 + \cdots + L_n) = n$, then $W = L_1 + \cdots + L_n$ is unique.

Problem 7. (a.) Let $P = [p_0 : \cdots : p_n]$, and let \ldots, x^I, \ldots be the the monomials of degree d on \mathbb{P}^n. Denote by p^I the value of the monomial x^I at (p_0, \ldots, p_n). If $Q_d = \sum_I a_I x^I$ with $a_I \in k$ is a homogeneous polynomial of degree d defining the hypersurface X_d in \mathbb{P}^n, then $P \in X_d$ if and only if

$$Q(p_0, \ldots, p_n) = \sum_I a_I p^I = 0.$$

Since this is a linear relation on the coordinates \ldots, a_I, \ldots of $\text{Sym}^d(V^*)$, we see that the set of hypersurfaces of degree d through P is given by a hyperplane as desired.

(b.) Let $q = \left(\frac{d+2}{d}\right) - 1$, and $\mathbb{P}^2 = \mathbb{P}(V)$. Then $\mathbb{P}(\text{Sym}^d(V^*)) \simeq \mathbb{P}^q$. Fix $p_1, \ldots, p_q \in \mathbb{P}^2$, and let H_1, \ldots, H_q be the corresponding hyperplanes in \mathbb{P}^q as above. If $p_1, \ldots, p_q \in \mathbb{P}^2$ are sufficiently general, then $H_1 \cap \cdots \cap H_q$ will be a single point in \mathbb{P}^q. Thus, there is a uniquely determined hypersurface of degree d through q general points in \mathbb{P}^2.

To justify that a collection of “general” hyperplanes H_i are really independent, note that their coefficients in $\mathbb{P}^2(V^*)$ are basically monomials of degree d in the homogenous coordinates x, y, z of $\mathbb{P}^2(V)$. If we couldn’t find independent hyperplanes, this would mean that the monomials of degree d in x, y, z are linearly dependent. But they are not: they are a basis for $\text{Sym}^d(V^*)$. Equivalently, this is like saying that q general points in $\mathbb{P}^2(V)$ will span, under the Veronese map of degree d, the full linear space \mathbb{P}^{q-1}.

Problem 8. This is essentially all in Shafarevich. Come see me to discuss.

Problem 9. (a.) We know that linear subvarieties of $\mathbb{P}(V)$ of dimension d have the form $\mathbb{P}(W)$ for a uniquely determined $(d+1)$-dimensional vector subspace W of V. Thus, a line in $\mathbb{P}(V)$ corresponds to two dimensional subspace of V, i.e. to a point in $\mathbb{G}_2(V)$. Similarly, a linear subvariety of dimension d in $\mathbb{P}(V)$ corresponds to a $d+1$ dimensional subspace of V, which is a point in $\mathbb{G}_{d+1}(V)$.

(b.) Pick a basis $v_1 = (a_{11}', \ldots, a_{1n})', \ldots, v_d = (a_{d1}', \ldots, a_{dn})'$ of W. Then the subspace W corresponds to the rowspace of the $d \times n$ matrix

$$
\begin{pmatrix}
(a_{11}' & a_{12}' & \cdots & a_{1n}' \\
\vdots & \vdots & \cdots & \vdots \\
(a_{d1}' & a_{d2}' & \cdots & a_{dn}'
\end{pmatrix}.
$$
In other words, the subspace W is the image of k^d under the linear mapping determined by this matrix. Since v_1, \ldots, v_d are linearly independent, this matrix has full rank.

(c.) A different choice of basis for W would give a different matrix, but there would be some change of basis matrix $g \in GL(d)$ taking one to the other. Similarly, multiplying the matrix on the left by any invertible matrix simply replaces the original basis choice by some new one.

Thus, we can think of the set of d-dimensional subspaces of k^n as the orbits of the left action of $GL(d)$ on the set of full-rank $d \times n$ matrices.

(d.) Let $W \subset V$ be a d-dimensional subspace, and let A be the matrix corresponding to W as above. Since A has full rank, the determinant of some $d \times d$ minor doesn’t vanish. For simplicity, say it is the minor given by columns $1, \ldots, d$ (hereafter referred to as the first minor). We show there is unique matrix of the following form corresponding to W:

$$
\begin{pmatrix}
1 & \cdots & 0 & a_{1,d+1} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & a_{d,d+1} & \cdots & a_{d,n}
\end{pmatrix}
$$

Indeed, let $g \in GL(d)$ be the inverse matrix to the first minor. Then gA has this form and also determines W. Further, if B is another $d \times n$ matrix which determines W and has this form, we must have $B = hgA$ for some $h \in GL(d)$. Since the first minor of gA is the identity matrix, the first minor of hgA is h. Thus, we must have that h is the identity matrix, so $B = hgA = gA$.

Denote the set of subspaces W such that the determinant of the first minor of a matrix representative for W doesn’t vanish by $U_{(1,\ldots,d)}$. Then, we see that there is a bijective correspondence between $U_{(1,\ldots,d)}$ and $A^{d(n-d)}$, where points in the affine space correspond to the remaining $d(n-d)$ entries in the matrix for W after we’ve put the matrix for W in the above form.

Now, fix the following notation. For a $d \times n$ matrix A and a collection of indices $1 \leq i_1 < \cdots < i_d \leq n$, let $\Delta_{(i_1,\ldots,i_d)}(A)$ denote the determinant of the $d \times d$ minor of A given by the columns i_1, \ldots, i_d. For any collection of indices $1 \leq i_1, \ldots, i_d \leq n$, we can construct the set $U_{(i_1,\ldots,i_d)}$ where $\Delta_{(i_1,\ldots,i_d)}$ does not vanish. This set corresponds to $A^{d(n-d)}$ in exactly the same way as above. Since there are $\binom{n}{d}$ such collections of indices, we conclude that we can cover $G_d(V)$ by $\binom{n}{d}$ copies of $A^{d(n-d)}$.

This really is analogous to the standard affine cover of $\mathbb{P}(V)$. Considering $\mathbb{P}(V) = G_1(V)$, we’re interested in $1 \times n$ matrices modulo the action of 1×1 invertible matrices, i.e. non-zero scalars. The standard affine charts can be described as the non-vanishing of the j-th homogeneous coordinate, which is precisely the determinant of the j-th 1×1 minor of the $1 \times n$ matrix.

(e.) For simplicity, we will assume $U_2 = U_{(1,\ldots,d)}$ and $U_1 = U_{(i_1,\ldots,i_d)}$ is any of the other patches. Let W be a d-dimensional subspace of V which is in U_1, and let B be the matrix corresponding to W in the appropriate form. Then W is in U_2 if and only if $\Delta_{(1,\ldots,d)}(B) \neq 0$. The map ϕ_1 identifies
the coordinate functions on $\mathbb{A}^{d(n-d)}$ with the entries of B. Since $\Delta_{(1,\ldots,d)}$ is a polynomial in the entries of B, $\Delta_{(1,\ldots,d)} \circ (\phi_1)^{-1}$ is polynomial on $\mathbb{A}^{d(n-d)}$. Thus, V_1 is open in $\mathbb{A}^{d(n-d)}$.

Let’s assume $W \in U_1 \cap U_2$. Let A be the matrix corresponding to W in the form appropriate for U_2. Then we saw above that $A = gB$, where $g \in GL(d)$ was the inverse matrix to the first minor of B. Write

$$A = \begin{pmatrix} 1 & \cdots & 0 & a_{1,d+1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & a_{d,d+1} & \cdots & a_{d,n} \end{pmatrix}.$$

Note that $a_{i,j} = \Delta_{(1,\ldots,\hat{i},\ldots,d,j)}(A)$ for $j = d+1,\ldots,n$ and $i = 1,\ldots,d$. Thus, we have

$$a_{i,j} = \Delta_{(1,\ldots,\hat{i},\ldots,d,j)}(gB) = \det(g) \cdot \Delta_{(1,\ldots,\hat{i},\ldots,d,j)}(B) = \frac{\Delta_{(1,\ldots,\hat{i},\ldots,d,j)}(B)}{\Delta_{(1,\ldots,d)}(B)}.$$

The map ϕ_2 identifies the coordinate functions of $\mathbb{A}^{d(n-d)}$ with the $a_{i,j}$. After also using ϕ_1 to identify the entries of B with the coordinates of $\mathbb{A}^{d(n-d)}$, these are the component functions of the chart change map $\phi_2 \circ (\phi_1)^{-1} : V_1 \to V_2$. In particular, note that they are rational functions on $\mathbb{A}^{d(n-d)}$ which are regular on V_1.

(f.) The above calculation allows us to give $G_d(V)$ the structure of an abstract variety over any field. We simply use the bijective maps $\phi_{(i_1,\ldots,i_d)} : U_{(i_1,\ldots,i_d)} \to \mathbb{A}^{d(n-d)}$ to give $G_d(V)$ its topology and sheaf of rings locally. By the previous part, this is well defined. Essentially, the maps $\phi_2 \circ (\phi_1)^{-1}$ are telling us how to glue these copies of $\mathbb{A}^{d(n-d)}$ to get $G_d(V)$. The point is that these coordinate change maps are regular. If we are working over \mathbb{R}, noting that the coordinate change maps are smooth shows that $G_d(V)$ is a smooth manifold. Since they are also holomorphic when considered over \mathbb{C}, we can consider $G_d(V)$ as a complex manifold. No matter what we do, however, the dimension is $d(n-d)$ – it locally looks like $\mathbb{A}^{d(n-d)}$!