Math 156 Applied Honors Calculus II Final Exam Review Sheet Solutions Fall 2016

1. True or False

a) TRUE. \(\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \cdots + \frac{n}{n} = \sum_{i=1}^{n} \frac{i}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2} \)

b) TRUE. \(\lim_{n \to \infty} \sum_{i=1}^{n} f'(x) \Delta x = \int_{a}^{b} f'(x) dx = f(b) - f(a) \) by FTC

c) FALSE. If \(n \) is doubled, then \(\Delta x \) decreases by a factor of \(\frac{1}{2} \) and the error in the right-hand Riemann sum decreases by a factor of \(\frac{1}{4} \), not \(\frac{1}{2} \), as we saw in examples in class.

d) TRUE. Apply integration by parts. TO BE COMPLETED

e) FALSE. Since \(\int_{0}^{1} \frac{d}{dx} \) diverges by \(p \)-test \(\Rightarrow \int_{0}^{1} \frac{d}{dx} \) diverges.

f) FALSE. When the spring is stretched from length 20 cm to 30 cm, the work done is \(\int_{20}^{30} k \Delta x = \int_{20}^{30} 20 \Delta x = \int_{20}^{30} 2 \Delta x = 2 \) Joules. Then when the spring is stretched from length 30 cm to 40 cm, the work done is \(\int_{30}^{40} k \Delta x = \int_{30}^{40} 20 \Delta x = \int_{30}^{40} 20 \Delta x = 20 \) Joules.

g) FALSE. TO BE COMPLETED

h) FALSE. A counterexample is an exponential distribution, \(f(x) \) attains its maximum value at \(x = 0 \) rather than \(\mu = \frac{1}{e} \).

(i) TRUE. \(\int_{-\infty}^{\infty} (x - \mu) f(x) dx = \int_{-\infty}^{\infty} x f(x) dx - \int_{-\infty}^{\infty} \mu f(x) dx = \mu - \mu \cdot 1 = 0 \)

(j) FALSE. After 100 years the sample has mass \(\frac{1}{2} \) kg, and after 400 years the sample has mass \(\frac{1}{16} \) kg.

(k) TRUE. continuous compounding \(\Rightarrow y(t) = y_0 e^{rt} \Rightarrow y(2) = 1000e^{0.05 \cdot 2} = 1000e^{0.1} \); hence we need to show that \(1105 < 1000e^{0.1} < 1112 \)

1st part: we need to show that \(1105 < 1000e^{0.1} \); recall that \(e^x = 1 + x + \frac{1}{2} x^2 + \cdots \); so \(e^{0.1} = 1 + 0.1 + \frac{1}{2} (0.1)^2 + \cdots = 1 + 0.1 + 0.005 + \cdots \); then summing the first three terms yields \(e^{0.1} = 1.105 + \cdots \), and since the remainder is positive, we have \(e^{0.1} > 1.105, \) thus \(1000e^{0.1} > 1000 \cdot 1.105 = 1105 \)

2nd part: we need to show that \(1000e^{0.1} < 1112 \); this is equivalent to showing that \(e^{0.1} < 1.112 \); in this case let us consider \(e^{-x} \); it is fairly easy to see that \(e^{-x} > 1 - x \) for \(x \neq 0 \); for example, consider the graph of \(e^{-x} \) and \(1 - x \); then let us set \(x = 0.1 \), so that we have \(e^{-0.1} > 1 - 0.1 \); this implies that \(e^{-0.1} > 0.9 \); and this implies that \(e^{0.1} < \frac{1}{0.9} = \frac{10}{9} = 1.1111 \cdots < 1.112 \); so we’re done

l) FALSE. \(y(t) = 0 \) is a constant solution of the differential equation, but it is unstable by looking at the phase plane.

m) FALSE. This is only true if the constant solution is stable.

n) FALSE. If the step size \(\Delta t \) decreases, then the error also decreases.

o) FALSE. A counterexample is \(a_n = \frac{1}{n}, b_n = n^2 \).

(p) FALSE. A counterexample is \(a_n = \frac{1}{n}, b_n = \frac{1}{n} \), so that \(\sum_{n=0}^{\infty} a_n \) converges, but \(\sum_{n=0}^{\infty} b_n \) diverges.

(q) FALSE. Method 1: draw a graph of \(y = \frac{1}{x} \) for \(x \geq 1 \) and note that \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is a left-hand Riemann sum for \(\int_{1}^{\infty} \frac{dx}{x^2} \), and hence the sum is larger than the integral.

Method 2: \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \int_{1}^{\infty} \frac{dx}{x^2} = \frac{1}{x} \bigg|_{1}^{\infty} = 1 \)

r) FALSE. Method 1: The error bound for a convergent alternating series says that \(|s - s_n| < a_{n+1} \). If we set \(n = 1 \), then \(|s - s_1| < a_2 \Rightarrow |s - 1| < \frac{1}{2} \Rightarrow \frac{1}{2} < s < \frac{3}{2} \), so \(s \neq 0 \).

Method 2: In class we showed that \(1 - \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \cdots = \ln 2 \neq 0 \).

s) FALSE. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1} = \infty - \infty = 0 \)

The 1st step is correct, but the 2nd step is incorrect; the original sum is equal to 1 (as shown on homework), so it is incorrect to write \(1 = \infty - \infty \).

t) FALSE. The AST cannot be used to show that a series diverges.

(u) FALSE. \(\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1 \Rightarrow \) the ratio test is inconclusive

v) FALSE. A counterexample is \(\sum_{n=1}^{\infty} (-1)^n x^n \), which converges for \(x = 1 \) by the AST, but diverges for \(x = -1 \) since it is the harmonic series in that case.
w) TRUE. The radius of convergence is at least $R = 1$, so the interval of convergence is at least $0 < x < 2$, which contains $x = \frac{1}{2}$.

x) TRUE. $\frac{1}{1+x} = \frac{1}{1-(\frac{1}{x})} = \sum_{n=0}^\infty (-1)^n x^n$, then differentiating both sides yields $\frac{1}{(1+x)^2} = \sum_{n=1}^\infty (-1)^n n x^{n-1} \Rightarrow \frac{1}{(1+x)^2} = \sum_{n=1}^\infty (-1)^n n x^{n-1} = \sum_{n=0}^\infty (-1)^n (n+1) x^n$, and we can check that the IOC is $-1 < x < 1$.

y) FALSE. Don’t try to find $f^{(3)}(0), f^{(6)}(0)$ directly. Instead use the Taylor series to derive them, since the general form of a Taylor series is $f(x) = \sum_{n=0}^\infty c_n x^n$, where $c_n = \frac{f^{(n)}(0)}{n!} \Rightarrow f^{(n)}(0) = n! \cdot c_n$. Since $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots$, then $e^{-x^2} = 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{3!} + \cdots$. Then $c_3 = 0$, since there is no x^3 term, and hence $f^{(3)}(0) = 0$. Then $c_6 = -\frac{1}{6}$, thus $f^{(6)}(0) = 6! \cdot c_6 = 720 \cdot (-\frac{1}{6}) = -120$. Thus the statement is false.

z) TRUE.

part 1: Since $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots$, then setting $x = 1$, we have $e = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \cdots$, and it is clear that $e > 2$.

part 2: Setting $x = -1$ in the power series for e^x, we have $e^{-1} = 1 - 1 - \frac{1}{2} - \frac{1}{3!} + \cdots$, then using the error bound for a convergent alternating series we have $|e^{-1} - \frac{1}{2}| < \frac{1}{6} \Rightarrow \frac{1}{3} < e^{-1} < \frac{2}{3}$, then $e^{-1} > \frac{1}{3} \Rightarrow e < 3$.

aa) TRUE. $e^x = 1 + x + \frac{x^2}{2} + \cdots \Rightarrow e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2} + \cdots = 1 - x^2 + \frac{x^4}{2} - \cdots$ Next we note that $e^{-x^2} > 1 - x^2$ for $x > 0$; to show this we can sketch the graph of e^{-x^2} and $1 - x^2$. To confirm the sketch, consider the function $f(x) = e^{-x^2} - (1 - x^2)$, note that $f(0) = 0$ and $f'(x) = -2xe^{-x^2} + 2x = 2x(1-e^{-x^2}) > 0$ for $x > 0$, so $f(x)$ is an increasing function, and this implies $f(x) > 0$ for $x > 0$, and hence we have $e^{-x^2} > 1 - x^2$ for $x > 0$. Then we have $\int_0^1 e^{-x^2} dx > \int_0^1 (1 - x^2)dx = (x - \frac{x^3}{3})|_0^1 = 1 - \frac{1}{3} = \frac{2}{3}$.

bb) TRUE. Since the series is $\frac{1}{x^2}$ (note that $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$) and $\sin \frac{\pi}{2} = 1$.

c) TRUE. $\cosh^2 x - \sin^2 x = (e^{x} + e^{-x})^2 - (e^{x} - e^{-x})^2 = e^{2x} + 2 + e^{-2x} - e^{2x} - 2 + e^{-2x} = 1$.

dd) FALSE. $\int \sin x dx = \int \sin x \cdot dx = \int \sin x \cdot dx = \ln(\cos x) \neq \sec^2 x$. Note that $(\tan x)' = \sec^2 x$.

ee) TRUE. Note that $T_1(x) = f(a) + f'(a)(x-a)$, thus $T_1'(a) = f'(a)$.

ff) FALSE. In class we showed that the function defined by $f(x) = e^{-x^2}$ for $x \neq 0$ and $f(0) = 0$ has the property that $f^{(n)}(0) = 0$ for all n, yet $f(x) \neq 0$ for $x \neq 0$.

gg) TRUE. $e^x = 1 + x + \frac{x^2}{2} + \cdots$, so $e^{-0.1} = 1 + (-0.1) + \frac{(-0.1)^2}{2} + \cdots = 1 - 0.1 + 0.005 + \cdots$, so $|e^{-0.1} - 0.9| \leq 0.005$, so $0.895 \leq e^{-0.1} \leq 0.905$.

hh) FALSE. Using the binomial series $(1+x)^k = 1 + kx + \cdots$, replace x with x^2, then $(1 + x^2)^k = 1 + kx^2 + \cdots$, and then setting $k = \frac{1}{2}$, we have $\sqrt{1 + x^2} = (1 + x^2)^{\frac{1}{2}} = 1 + \frac{1}{2} x^2 + \cdots$.

ii) TRUE. Since $\cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \cos x + i \sin x + \cos x - i \sin x = \cos x$

jj) TRUE.

part 1: $\int_0^{\pi/2} \sin^2 \theta d\theta = \int_0^{\pi/2} (\frac{1}{2} - \frac{1}{2} \cos 2\theta) d\theta = (\frac{1}{2} - \frac{1}{2} \sin 2\theta)|_0^{\pi/2} = \frac{\pi}{4}$

part 2: $\int_0^{\pi/2} \cos^2 \theta d\theta = \int_0^{\pi/2} (\frac{1}{2} + \frac{1}{2} \cos 2\theta) d\theta = (\frac{1}{2} \theta + \frac{1}{2} \sin 2\theta)|_0^{\pi/2} = \frac{\pi}{4}$

kk) TRUE. Since $\sin x = \cos \pi + i \sin x = -1 \Rightarrow \pi i = \log(-1)$. (Actually, more rigorously, $\log(-1) = (2k + 1)i\pi$, where k is an integer.)

ll) FALSE. $(\frac{6}{3}) = 6! \cdot 3! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 20$

mm) FALSE. $(\frac{4}{5}) = \frac{5!}{3!^2} \cdot (\frac{3}{5}) = \frac{4!}{3!^2}$, so they are equal.

nn) TRUE. $(a + b)^k = \sum_{n=0}^k \binom{k}{n} a^{k-n} b^n$, then setting $a = 1, b = -1$ yields $\sum_{n=0}^k \binom{k}{n} (-1)^{n+1} = (1 + (-1))^k = 0^k = 0$

Question 2 Solution

a) geometric series : sum $= \sum_{n=1}^{\frac{1}{Sin(x)}} = \frac{2017}{2017\cdot 2016} = 2017$

b) It equals $\int_0^1 (1+x)dx = \left(x + \frac{x^2}{2} \right)|_0^1 = \frac{3}{2}$ (change $\frac{1}{n} \to x, \frac{1}{n} \to dx$)

c) It equals $\int_0^1 \frac{1}{1+x} dx = \ln(1+x)|_0^1 = \ln 2$

d) By L’Hospital’s rule, $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)’}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1$.

e) By L’Hospital’s rule, $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)’}{x} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}$.

f) Note that $\lim_{n \to \infty} (1 + \frac{x}{n})^{2n} = (\lim_{n \to \infty} (1 + \frac{x}{n}))^2 = (e^x)^2 = e^{2x}$
g) By L'Hopital's rule \(\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{x} = \lim_{x \to 0} \frac{\sqrt{1+x^2} \cdot 2x}{x} = \lim_{x \to 0} \frac{2x}{1} = \frac{1}{2} \)

h) \(\lim_{h \to 0} \frac{(x+h)^4 - x^4}{h} = \lim_{h \to 0} \frac{4x^3 + 6x^2 h + 4xh^2 + h^3}{1} = \lim_{h \to 0} \frac{4x^3 + 6x^2 h + 4xh^2 + h^3}{h} = 4x^3 \) (one can use L'Hopital rule, note that 'h' is variable here, regard x as constant)

i) By L'Hopital's rule, \(\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h \to 0} \frac{f'(x+h)}{1} = f'(x) \)

j) Using L'Hopital's rule twice, \(\lim_{h \to 0} \frac{f(x+h)-2f(x)+f(x-h)}{2h} = \lim_{h \to 0} \frac{f''(x+h)+f''(x-h)}{2} = f''(x) \)

k) \(\lim_{h \to 0} \frac{f(x+hx)dx}{h^3} \) L'Hospital Rule \(\lim_{h \to 0} \frac{f'(x+hx)}{h} = \lim_{h \to 0} \frac{f'(h)}{1} = f(0) \)

l) \(\lim_{h \to 0} \frac{f'(x+hx)dx}{h^2} \) L'Hospital Rule \(\lim_{h \to 0} \frac{f''(x+hx)}{h^2} = \lim_{h \to 0} \frac{f''(h)}{2} = \frac{f''(h)}{2} = \frac{f(0)}{2} \)

integration

Question 3 Solution

a) TO BE COMPLETED

b) TO BE COMPLETED

c) \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \Rightarrow e^{-x^2} = \sum_{n=0}^{\infty} \frac{1}{n!} (-x^2)^n = \sum_{n=0}^{\infty} \frac{1}{n!} (-1)^n x^{2n} = \int e^{-x^2} dx = \int \sum_{n=0}^{\infty} \frac{1}{n!} (-1)^n x^{2n} dx = \sum_{n=0}^{\infty} \frac{1}{n!} (-1)^n \frac{1}{2n+1} x^{2n+1} = x - \frac{1}{3} x^3 + \frac{1}{10} x^5 - \frac{1}{42} x^7 + \cdots \)

d) TO BE COMPLETED

e) Integration by parts : \(\int x \sin x \, dx = \int x (-1) d \cos x = - \int x \, d \cos x = - x \cos x + \int \cos x \, dx = - x \cos x + \sin x = \sin x - x \cos x \)

f) Use integration by parts twice

once : \(\int e^{-x^2} \sin x \, dx = \int e^{-x^2} (-1) d \cos x = - e^{-x^2} \cos x + \int \cos x \, d (-e^{-x^2}) = - e^{-x^2} \cos x - \int e^{-x^2} \cos x \, dx \)
twice : \(\int e^{-x^2} \cos x \, dx = \int e^{-x^2} (-1) d \sin x = - e^{-x^2} \sin x + \int \sin x \, d (-e^{-x^2}) = - e^{-x^2} \sin x + \int e^{-x^2} \sin x \, dx \)

\(\Rightarrow \int e^{-x^2} \sin x \, dx = - e^{-x^2} \cos x - e^{-x^2} \sin x - \int e^{-x^2} \sin x \, dx \Rightarrow 2 \int e^{-x^2} \sin x = - e^{-x^2} \cos x - e^{-x^2} \sin x \)

\(\Rightarrow \int e^{-x^2} \sin x = \frac{1}{2} (e^{-x^2} \cos x - e^{-x^2} \sin x) = - \frac{1}{2} e^{-x^2} \sin x \)
\[\begin{align*}
\text{using 3) } x & \to 2x \\
\int_0^{2\sqrt{3}} \frac{x^3}{\sqrt{10-x}} \, dx & = TO BE COMPLETED
\end{align*} \]

Question 4 Solution

a) \[\int_0^{2\sqrt{3}} \frac{x^3}{\sqrt{10-x}} \, dx \] TO BE COMPLETED

b) \[\int_{-\infty}^\infty x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \] TO BE COMPLETED

c) \[\int_{-\infty}^\infty (x-1)^2 \frac{1}{2\pi} e^{-\frac{(x-1)^2}{2}} \, dx \] TO BE COMPLETED

Question 5 Solution

Using variable substitution \(u = \frac{x}{2} - x, \ du = -dx \)

\[\int_0^{\pi/2} \frac{\sin x}{\sin \theta + \cos \theta} \, d\theta = \] \(TO BE COMPLETED \)

b) divergent by \(p \)-test
\[\int_1^\infty \frac{1}{x^{1/2}} \, dx = \ln x \bigg|_1^\infty = \infty \]

c) \[\int_0^\infty \frac{dx}{x^{1/2}} = \] \(TO BE COMPLETED \)

d) divergent by \(p \)-test
\[\int_0^\infty \frac{dx}{x} = -\frac{1}{2} \ln(1) = \infty \]

e) convergent by \(p \)-test
\[\int_0^1 \frac{dx}{x^3} = \frac{2}{\sqrt{3}} \]

f) divergent by \(p \)-test Since both \(\int_0^1 \frac{dx}{x^2} \) and \(\int_0^1 \frac{dx}{x} \) diverges.

Question 6 Solution

Substitute \(u = x^2 \), so \(du = -2r dx \)

limits \(x = -a \Rightarrow u = r^2 - 2r(-a) + a^2 = r^2 + 2ra + a^2 = (r + a)^2 \)

\[V(r) = \frac{q}{2\pi} \int_{x-a}^{x+a} \frac{dx}{\sqrt{r^2 - x^2}} = \frac{q}{2\pi} \left(\int_{x-a}^{x+a} \frac{dx}{\sqrt{(r+a)^2 - x^2}} \right) \]

\[= \frac{q}{2\pi} \left(\ln |r - a| - |r + a| \right) \]

\[\begin{cases}
\frac{q}{a} & \text{if } r \geq a \\
\frac{q}{2} & \text{if } 0 \leq r \leq a
\end{cases} \]

Question 7 Solution

Assume the aquarium has length \(l \), width \(w \), and height \(h \), let \(x \) be the vertical coordinate with \(x = 0 \) at the bottom of the aquarium (positive \(x \) is up), divide the water into layers of width \(\Delta x = \frac{h}{n} \) each layer is a rectangular box with volume \(lwx \Delta x \), the force on a layer is \(pglw \Delta x \), the layer at level \(x = i \Delta x \), after letting \(n \to \infty \), \(\Delta x \to 0 \), the work done is \(W = \int_0^h pglw(h-x) \, dx = pglwh(\frac{h}{2} - \frac{x}{2}) \bigg|_0^h = \frac{1}{2} pglw^2 \), substituting the given values, the work done is \(W = \frac{1}{2} pgh \cdot 2 \cdot 0.5 \cdot 1^2 = \frac{1}{2} pgh \) Joule. From the formula \(W = \frac{1}{2} pglw^2 \), we see that if the width \(w \) is doubled, then the work is also doubled, and if the height \(h \) is doubled, then the work is multiplied by 4.

Question 8 Solution

a) On \(x \)-axis, since one ion is held fixed at \(x = 0 \), the distance is \(x \), replace \(r \) in \(F = \frac{q^2}{r^2} \) with \(x \), Work = \[\int F(x) \, dx = \int \frac{q^2}{r^2} \, dx = \frac{q^2}{x} \bigg|_0^x = \frac{q^2}{2} \]

b) On \(x \)-axis, since one ion is held fixed at \(x = 1 \), the distance becomes \(x - 1 \), replace \(r \) in \(F = \frac{q^2}{r^2} \) with \(x - 1 \), Work = \[\int F(x) \, dx = \int \frac{q^2}{(x-1)^2} \, dx = \frac{q^2}{x-1} \bigg|_1 = \frac{q^2}{2} - \frac{q^2}{3} = \frac{q^2}{6} \]

c) The work can be calculated with respect to \(A(x=0) \) and \(B(x=1) \) separately, then put together. Add the results in a) and b) together Work = \(\frac{q^2}{6} + \frac{q^2}{2} = \frac{2q^2}{3} \).

d) Divide the rod into many small pieces, each with width \(\Delta w \); here we use \(w \) to denote the position of small pieces (\(w \) changes from \(0 \) to \(1 \)), \(\frac{\Delta w}{w} \) each piece the charge is \(q \Delta w \), and the force \(F(x) = -\frac{q^2\Delta w}{(x-w)^2} \), work contributed by each piece \(= \int_3 F(x) \, dx = \int \frac{q^2\Delta w}{(x-w)^2} \, dx = \frac{q^2\Delta w}{x-w} \bigg|_3 = \left(\frac{1}{2-\frac{w}{3}} \right) q^2 \Delta w \). Then we need a second integral for \(w \) from 0 to 1 to sum all the pieces, Total Work = \(\int_0^1 \left(\frac{1}{2-w} - \frac{1}{3-w} \right) q^2 \Delta w \, dw = \left(\frac{1}{2-w} - \frac{1}{3-w} \right) q^2 \Delta w \, dw = q^2 \left(-\ln(2-w) + \ln(3-w) \right) \bigg|_0^1 = q^2 \ln \frac{3}{2} \approx 0.28q^2 \) (this result is reasonable since it is larger than \(\frac{2q^2}{6} \approx 0.16q^2 \) (case a) and
smaller than $\frac{\pi}{4} \approx 0.5q^2$ (case b), cases a and b are two extreme cases (if we put all charge to one end of the rod), given that in the three cases (a,b,d) the total charge is the same.

Question 10 Solution

\[f(x) = \cosh x \Rightarrow f'(x) = \sinh x \Rightarrow 1 + (f'(x))^2 = 1 + \sinh^2 x = \cosh^2 x \Rightarrow \sqrt{1 + (f'(x))^2} = \cosh x \]

a) arclength = \(f_1^{-1} \frac{\sqrt{1 + (f'(x))^2}}{x} = f_1^{-1} \cosh x \) dx \(= \sinh x \left| _{x = 1}^{x = 1} \right. = \sinh 1 - \sinh(-1) = 2 \sinh 1 \)

b) surface area = \(\int_{a}^{b} 2 \pi f(x) \sqrt{1 + (f'(x))^2} dx = 2 \pi \int_{a}^{b} \cosh^2 x \) dx = \(2 \pi \int_{a}^{b} \left(\frac{e^x + e^{-x}}{2} \right)^2 dx = 2 \pi \int_{a}^{b} \left(\frac{e^{2x} + e^{-2x}}{4} \right) dx \)

\[= \frac{2 \pi}{4} \left[\frac{x}{2} + x + e^{-x} \right] \left| _{a}^{b} = \frac{\pi}{2} \frac{x}{2} + 2 + e^{-2 - 2} - \left(\frac{e^{2} - 2 - e^{2}}{2} \right) \right. = \frac{\pi}{2} (e^2 + 4 - e^{-2}) = \frac{\pi}{2} (2 \sinh 2 + 4) = \pi (\sinh 2 + 2) \]

You can save some time using the fact that \(\cosh x \) is an even function, so \(\int_{a}^{b} \cdot 2 \int_{a}^{b} \cdot \cdot \cdot \).
b) \(y' = 1 - 2y \Rightarrow \frac{dy}{1 - 2y} = 1 - 2y \) separation of variables \(\Rightarrow \frac{dy}{1 - 2y} = dt \) integrate both sides \(\Rightarrow -\frac{1}{2} \ln |1 - 2y| = t + C \)
\[y_0 = 0 \Rightarrow C = 1 \Rightarrow y = \frac{1}{2} e^{2t} \text{ and } \lim_{t \to \infty} y(t) = \frac{1}{2} \]

c) \(y' = 1 - y^2 \Rightarrow \frac{dy}{dt} = (1 + y)(1 - y) \) separation of variables \(\Rightarrow \frac{dy}{(1 + y)(1 - y)} = dt \) partial fraction \(\Rightarrow \frac{dy}{1 + y} + \frac{dy}{1 - y} = dt \) integrate both sides \(\Rightarrow \frac{1}{2} \ln |1 + y| - \frac{1}{2} \ln |1 - y| = t + C \Rightarrow \ln |1 + y| = 2t + C \Rightarrow \frac{1 + y}{1 - y} = Ce^{2t} \) where \(C \) is constant may be positive or negative \(\Rightarrow y(t) = \frac{Ce^{2t} + 1}{Ce^{2t} - 1} \)
\[y_0 = 0 \Rightarrow C = 1 \Rightarrow y(t) = \frac{1}{2} e^{2t} - 1. \] Furthermore \(y(t) = \frac{(e^{2t} - 1)e^{-t}}{(e^{2t} + 1)e^{-t}} = \frac{e^t - e^{-t}}{e^t + e^{-t}} = \tanh t \)
Check... \(y(t) = \tanh t \) is the solution.
\[\lim_{t \to \infty} y(t) = 1 \]
d) \(y' = -ty \Rightarrow \frac{dy}{dt} = -ty \) separation of variables \(\Rightarrow \frac{dy}{y} = -tdt \) integrate both sides \(\Rightarrow \ln |y| = -\frac{1}{2}t^2 + C \Rightarrow y = Ce^{-\frac{1}{2}t^2} \)
\[y_0 = 1 \Rightarrow C = 1 \Rightarrow y(t) = e^{-\frac{1}{2}t^2} \]
\[\lim_{t \to \infty} y(t) = 0 \]

Question 15 Solution

a) \(y = c_1e^t + c_2e^{-t} \Rightarrow y' = c_1e^t - c_2e^{-t} \Rightarrow y'' = c_1e^t + c_2e^{-t} = y, \) thus it is a solution of \(y'' = y \) for any constants \(c_1, c_2. \)

b) \(y(0) = 1, y'(0) = 0 \Rightarrow c_1 + c_2 = 1, c_1 - c_2 = 0 \Rightarrow c_1 = c_2 = \frac{1}{2} \Rightarrow y(t) = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \cosh x \)

c) \(y(0) = 0, y'(0) = 1 \Rightarrow c_1 + c_2 = 0, c_1 - c_2 = 1 \Rightarrow c_1 = \frac{1}{2}, c_2 = -\frac{1}{2} \Rightarrow y(t) = \frac{1}{2}e^t - \frac{1}{2}e^{-t} = \sinh x \)

Question 16 Solution

a) \(y' = ky. \) Solve the equation, we have \(y(t) = y_0e^{kt}. \) \(200 = y(30) = y_0e^{30k} \) and \(800 = y(90) = y_0e^{90k}. \) Therefore, \(y_0 = 100 \) cells.

b) \(200 = 100e^{30k}, \) so \(k = \frac{\ln 2}{30}. \) Therefore, \(y(t) = 100 \cdot 2^{t/30}. \) Solve the equation \(6400 = 100 \cdot 2^{t/30}. \) Then \(t = 30 \ln 64/\ln 2 = 30 \cdot 6 = 180 \) hours.

Question 17 Solution

\[y(t) = y_0e^{-kt} \]
\[y(t) = 40 \cdot \left(\frac{1}{2} \right)^{\frac{1}{1.4} \times 10^{-t}} \]
\[30 = 40 \cdot \left(\frac{1}{2} \right)^{\frac{1}{1.4} \times 10^{-t}} \]
\[t = 1.4 \times 10^{-4} \ln \frac{3}{\ln 2} = 0.581 \times 10^{-4} \text{s} \]

Question 18 Solution

\(y(t) : \) tiger body mass (kg) as a function of time \(t \) (day)
\(y' = \text{rate in} - \text{rate out} = 2500 \text{cal/day} \cdot \frac{1 \text{kg}}{1000 \text{cal}} - 20 \text{cal} \cdot \frac{1 \text{kg}}{1 \text{day}} \cdot \frac{1}{1 \text{day}} = 2500 - 20y \text{ kg/day} \)
\(y' = -\frac{1}{500}(y - 125) \) Newton’s heating/cooling \(y' = k(y - T) \)
\(y(t) = T + (y_0 - T)e^{kt} = 125 + (y_0 - 125)e^{-\frac{t}{500}} \Rightarrow \lim_{t \to \infty} y(t) = 125 \text{ kg} \)

Question 19 Solution

\(y(t) = T + (y_0 - T)e^{-kt} \), note that the patient’s temperature is \(T, \) \(y_0 = 70^\circ \text{F} \)
\(y(1) = 95 = T + (70 - T)e^{-k} \)
\(y(2) = 100 = T + (70 - T)e^{-2k} \)
\(\Rightarrow (95 - T)^2 = 100 - T \Rightarrow (95 - T)^2 = (100 - T)(70 - T) \Rightarrow T^2 = 95^2 = T^2 - 190T + 70000 \Rightarrow 20T = 2025 \)
\(\Rightarrow T = 101.25^\circ \text{F} \)

Question 20 Solution

\(y' = ky(M - y) \)
\(y(t) = \frac{M y_0}{y_0 + (M - y_0)e^{-kt}} \)
\(y_0 = 10, M = 4000 \)
\(y(t) = \frac{10 + (4000 - 10)e^{-3990t}}{10 + 3990(4000 - 10)} \)
\(e^{-k} = \left(\frac{199}{399} \right)^{\frac{1}{3990}} \)
\(y(t) = \frac{10 + 3990(4000 - 10)}{10 + 3990(4000 - 10)} \)
\(\text{let } y(t) = \frac{1}{2} \cdot 4000 = 2000, \text{ solve } t = \frac{7 \ln 399}{\ln 399 - \ln 199} \approx 60 \text{ days.} \)
Question 21 Solution

This equation, \(y' = f(y) \) with \(f(y) = 2y \), is particularly simple to study with Euler’s Method. The recursion for Euler’s Method in this case is \(u_{k+1} = u_k + (\Delta t)f(u_k) = (\Delta t)(2u_k) \). After factoring, \(u_{k+1} = (1 + 2\Delta t)(u_k) \). This means that, in this case, we don’t actually need to do each iteration of the process; we can foresee that \(u_k = (1 + 2\Delta t)^k u_0 = (1 + 2\Delta t)^k \).

So \(u_n = (1 + 2/n)^n \), where \(n = 1/\Delta t \) is the number of steps.

\[
\begin{align*}
\Delta t &\quad u_n \\
1 &\quad (1 + 2)^3 = 3 \\
1/2 &\quad (1 + 1)^2 = 4 \\
1/4 &\quad (1 + 1/2)^4 = 5.0625
\end{align*}
\]

Remark. The general solution of this differential equation is \(y = C e^{2t} \), and the solution which fits our initial condition is \(y = e^{2t} \). Thus the true answer is \(y(1) = e^2 \approx 7.389 \). We need to use smaller steps to get a satisfactory approximation. With 1000 steps, we would still only have \(u_n \approx 7.374 \).

Series

Question 22 Solution

a) divergent \(\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} \) by p-test of series, \(p = 1 \).

b) convergent since \(\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = 1 < \infty \).

c) divergent by p-test of series, \(p = 2 \).

\[= \frac{1}{2} \]

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n} = 2 > 1, \ (L > 1 \text{ divergent})
\]

Question 23 Solution

a) \(0.111111... = 0.1 + 0.01 + 0.001 + 0.0001 + \cdots = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots = \sum_{n=1}^{\infty} \frac{1}{10^n} = \sum_{n=0}^{\infty} \left(\frac{1}{10} \right)^n = \frac{1}{10} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{9} \)

b) \(0.1212121212... = \frac{12}{100} + \frac{12}{1000} + \frac{12}{10000} + \cdots = \sum_{n=1}^{\infty} \frac{12}{100^n} = \frac{12}{100} \sum_{n=0}^{\infty} \frac{1}{100^n} = \frac{12}{100} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{12}{99} \)

c) \(0.4999999... = 0.45 + 0.045 + 0.0045 + 0.00045 + \cdots = \frac{45}{100} + \frac{45}{1000} + \frac{45}{10000} + \cdots = \frac{45}{100} \sum_{n=1}^{\infty} \frac{1}{10^n} = \frac{45}{100} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{2} \)

\[= \frac{1}{2}\]

(i.e., \(0.4999999... = 0.5 \))

Question 24 Solution

a) recall: \(\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \) for all \(x \), so setting \(x = 2 \) we obtain \(\sum_{n=0}^{\infty} \frac{2^n}{n!} = e^2 \)

b) recall: \(\sum_{n=1}^{\infty} x^n = \frac{1}{1-x} \) for \(-1 < x < 1\), so setting \(x = \frac{1}{3} \) we obtain \(\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{1-\frac{1}{3}} = 2 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{3^n} - 1 = \frac{3}{2} - 1 = \frac{1}{2} \)

c) differentiating the first equation in part (b) with respect to \(x \) we obtain \(\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2} \) for \(-1 < x < 1\), so setting \(x = \frac{1}{3} \) we obtain \(\sum_{n=1}^{\infty} n \left(\frac{1}{3} \right)^{n-1} = \frac{1}{(1-\frac{1}{3})^2} = 2 \Rightarrow \sum_{n=1}^{\infty} n \left(\frac{1}{3} \right)^n = \frac{3}{2} \cdot \frac{3}{2} = \frac{9}{4} \)

Question 25 Solution

Given that \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \), note that \(\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \) includes all the odd terms. \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \text{odd terms} + \text{even terms} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \Rightarrow \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{8} \)

Question 26 Solution

a) Use \(|s - s_{10}| \leq \int_{10}^{\infty} f(x) \, dx \) since all terms are positive, where \(f(x) = \frac{1}{x^2} \)

\[|s - s_{10}| \leq \int_{10}^{\infty} f(x) \, dx = \int_{10}^{\infty} \frac{1}{x^2} \, dx = \left[-\frac{1}{x} \right]_{10}^{\infty} = 0.1 \]

b) Use \(|s - s_{10}| \leq a_{n+1} \) since the series is an alternating series.

\[|s - s_{10}| \leq a_{n+1} = \frac{1}{(n+1)^2} \]

Question 27 Solution
Assume that the dog starts with student A and runs to student B; if the time interval has duration t_0, then we have $10t_0 + 2t_0 = 20$ (the distance the dog runs plus the distance B walks is equal to the distance between them when they start). This implies that $12t_0 = 20$ or $t_0 = \frac{5}{3}$.

In the next time interval of duration t_1, the dog runs back to A; then we have $10t_1 + 2t_1 = 20 - 2t_0 - 2t_0$ (the distance the dog runs plus the distance A walks is equal to the distance between them when they start). This implies that $12t_1 = 40 - 4 \cdot \frac{5}{3} = \frac{40}{3}$ or $t_1 = \frac{10}{3} - \frac{2}{3} = \frac{2}{3}$.

Note that everything stayed the same except that the starting distance changed from 20 to $\frac{40}{3} = 20 \cdot \frac{2}{3}$.

In the next time interval of duration t_2, the dog runs back to B; then we have $10t_2 + 2t_2 = \frac{40}{3} - 2t_1 - 2t_1$ (the distance the dog runs plus the distance B walks is equal to the distance between them when they start). This implies that $12t_2 = \frac{40}{3} - 4 \cdot \frac{2}{3} = \frac{40}{3}$ or $t_2 = \frac{20}{3} \cdot \frac{2}{3}$.

Note that everything stayed the same except that the starting distance changed from $\frac{40}{3}$ to $\frac{80}{9} = \frac{40}{3} \cdot \frac{2}{3}$.

The pattern repeats.

The total time is $T = t_0 + t_1 + t_2 + \cdots = \frac{5}{3} + \frac{5}{3} \cdot \frac{2}{3} + \frac{5}{3} \cdot \left(\frac{2}{3}\right)^2 + \cdots = \frac{5}{3} \cdot \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \cdots \right) = \frac{5}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 5$.

Hence the dog travels a distance $D = 10 \text{ mph} \times 5 \text{ hours} = 50 \text{ miles}$.

The question asks us to express D as an infinite series, but we could also find the distance directly as follows. The students meet in the middle after walking a distance of 10 miles; since they walk at 2 mph, this must have taken 5 hours. This is also how long the dog runs, so the dog must have run a total distance of 10 mph \times 5 hours $= 50$ miles.

Question 28 Solution
Consider the remaining points as happening in pairs. In any pair of points, you will win both with probability p^2, lose both with probability $(1 - p)^2$, or win one and lose one with probability $2p(1 - p)$. In the first case, the game ends and you win. In the second case, the games and you lose. In the third case, there is no result and we are back to the same situation.

So any scenario in which you win has the following form: you split pairs of points with your opponent any number of times (0, 1, 2, ...), and then you win a pair. This the probability of winning is $p^2 + (2p(1 - p))p^2 + (2p(1 - p))^2 p^2 + \cdots = \sum_{n=0}^{\infty} (2p(1 - p))^n p^2 = p^2 \sum_{n=0}^{\infty} (2p(1 - p))^n = p^2 \cdot \frac{1}{1 - 2p(1 - p)} = \frac{p^2}{1 - 2p - 2p^2}$.

- $p = \frac{1}{2} \Rightarrow \frac{p^2}{1 - 2p - 2p^2} = \frac{1}{2}$ (no surprise)
- $p = \frac{1}{3} \Rightarrow \frac{p^2}{1 - 2p - 2p^2} = \frac{3}{8}$ (no surprise that this answer and the previous would sum to 1)

Question 29 Solution

a) The total length removed is $\frac{1}{3} + 2 \cdot \frac{1}{3} \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \cdots = \frac{1}{3} \left[1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \cdots \right] = \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1$

b) Notice that any point which is the endpoint of a remaining interval will never be removed. Every stage doubles the number of remaining intervals, so this accounts for infinitely many points.

Power Series, Taylor Series

Question 30 Solution

a) $L = \lim_{n \to \infty} a_n - a_{n+1} = \lim_{n \to \infty} \frac{x^{n+1}}{x^n} = |x| < 1 \Rightarrow$ the radius of convergence is 1; since at two end points $x = \pm 1$, the series diverges, the interval of convergence is $-1 < x < 1$. The sum is $\frac{1}{1 - x}$ for $-1 < x < 1$.

b) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^n x^{n+1} + x^n}{2^n x^{n+1}} = |\frac{x}{2}| < 1 \Rightarrow |x| < 2 \Rightarrow$ the radius of convergence is 2; since at two end points $x = \pm 2$, the series diverges, the interval of convergence is $-2 < x < 2$. The sum is $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n = \frac{1}{1 - \frac{x}{2}} = \frac{2}{2 - x}$ for $-2 < x < 2$.

c) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{(x-1)^n} \right| = |x-1| < 1 \Rightarrow -1 < x - 1 < 1 \Rightarrow 0 < x < 2 \Rightarrow$ the radius of convergence is 1 (the length of the interval divided by 2); since at two end points $x = 0$ and 2, the series diverges, the interval of convergence is 0 < x < 2. The sum is $\frac{1}{1-(x-1)} = \frac{1}{2-x}$ for 0 < x < 2.

d) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n z^{n+1}}{(n+1) z^n} \right| = |x| < 1 \Rightarrow -1 < x < 1 \Rightarrow$ the radius of convergence is 1; since at $x = 1$, the series is harmonic series thus diverges, while at $x = -1$, the series converges by AST (alternating series test), the interval of convergence is $-1 \leq x < 1$. Note that $x^n = \int nx^{n-1} dx \Rightarrow \sum_{n=0}^{\infty} n x^n = \int x^{n-1} dx$ the sum is $\sum_{n=1}^{\infty} \int x^{n-1} dx = \int x^n dx = \int \frac{1}{1-x} dx = -\ln(1-x) = \ln \frac{1}{1-x}$ for $-1 \leq x < 1$.
e) \[L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{nx^n} \right| = |x| < 1 \Rightarrow -1 < x < 1 \Rightarrow \text{the radius of convergence is } 1; \text{ since at } x = \pm 1, \text{ the series diverges, the interval of convergence is } -1 < x < 1.\]

Note that \((x^n)' = nx^{n-1}, \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} x^{n-1} = x \sum_{n=0}^{\infty} x^n = x \cdot \left(\frac{1}{1-x}\right)' = x \cdot \frac{1}{(1-x)^2} = \frac{x}{(1-x)^2}\]

\[\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n\]

Question 31 Solution

Namely find \(c_n\), such that \(f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} c_n(x - \frac{1}{2})^n\).

\[\frac{1}{1-x} = \frac{1}{1-(x-\frac{1}{2})} = \frac{1}{\frac{1}{2} - (x-\frac{1}{2})} = \frac{1}{\frac{1}{2}} \cdot \frac{1}{1-2(x-\frac{1}{2})} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} (2(x - \frac{1}{2}))^n = \sum_{n=0}^{\infty} 2^{n-1}(x - \frac{1}{2})^n\]

Question 32 Solution

\[f(x) = \sinh x \Rightarrow f(0) = \sinh 0 = 0 \]
\[f'(x) = \cosh x \Rightarrow f'(0) = \cosh 0 = 1 \]
\[f''(x) = \sinh x \Rightarrow f''(0) = \sinh 0 = 0 \]
\[f'''(x) = \cosh x \Rightarrow f'''(0) = \cosh 0 = 1 \]

\[\sinh x = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots = x + \frac{1}{3!}x^3 + \frac{1}{5!}x^5 \cdots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \]

\[\cosh x = (\sinh x)' = \left(\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}\right)' = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \]

Question 33 Solution

a) \[\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots, \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \]

\[\sin^2 x + \cos^2 x = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)^2 + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \right)^2 \]
\[= \left(x^2 - \frac{x^4}{3!} + \frac{x^6}{5!} + \cdots \right) + \left(1 - 2 \cdot \frac{x^2}{2!} + \frac{x^4}{4!} - 2 \cdot \frac{x^6}{6!} - \frac{x^8}{8!} + \cdots \right) = \cdots = 1 + O(x^8) \]

b) In fact we know that all terms in the power series for \(\sin^2 x + \cos^2 x\) vanish after the first term 1, though proving it is a nice fairly involved exercise.

Question 34 Solution

Because \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \), \(e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} = 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \frac{x^8}{24} - \frac{x^{10}}{120} + \cdots \)

\(T_1(x) = T_0(x) = 1\) and \(T_2(x) = 1 - x^2\). See Figure below for sketch.

![Figure 1: Graph for Problem 34.](image)

Question 35 Solution

Show that \(0 < f(x) < 1\); \(\lim_{x \to \infty} f(x) = 1\); \(\lim_{x \to 0^+} f^{(n)}(x) = \lim_{x \to 0^+} P(\frac{1}{2})e^{-1/x} = \lim_{x \to 0^+} P(\frac{1}{2})x^{-1/x} = \lim_{x \to 0^+} \frac{1}{e} x^{-1/x} = \lim_{x \to 0^+} \frac{1}{e} x^{-1/x} = \frac{1}{e} \), where \(P(\frac{1}{2})\) is a polynomial of \(\frac{1}{2}\); when \(x \to 0^+\)

\(e^{-1/x} \to 0\) exponentially (faster than any polynomial) thus \(f^{(n)}(x) \to 0\) regardless of the form of \(P(\frac{1}{2})\).
Question 36 Solution
method 1 It can be shown using Taylor series for \(f(x) = \sqrt{x} \) about \(x = a \), that \(\sqrt{x} = \sqrt{a} + \frac{1}{2\sqrt{a}}(x-a) - \frac{1}{8a^{3/2}}(x-a)^2 + \cdots \).
Setting \(a = 9 \) yields \(\sqrt{x} = 3 + \frac{1}{6}(x-9) - \frac{1}{216}(x-9)^2 + \cdots \).
This is a convergent alternating series (why?), so \(|s - s_n| < a_{n+1} \), i.e. \(|\sqrt{x} - (3 + \frac{1}{6}(x-9))| < \frac{1}{216}(x-9)^2 \).
Setting \(x = 10 \) yields \(\sqrt{10} - 3.16666 < \frac{1}{216} < \frac{1}{205} = 0.005 \).
The approximate value is \(\sqrt{10} \approx 3.1666 \).

method 2 Use the binomial series, \((1 + x)^k = 1 + kx + \frac{k(k-1)}{2}x^2 + \cdots \) for \(-1 < x < 1\).
\[\sqrt{10} = 9 + 1 = \sqrt{9(1 + \frac{1}{9})} = \frac{3}{1} + \frac{1}{2} = 3(1 + \frac{1}{3})^{1/2} \; \text{we have} \; x = \frac{1}{9} \; \text{and} \; k = \frac{1}{2} \]
\[\sqrt{10} = 3(1 + \frac{1}{9} \cdot \frac{1}{9} + \cdots) = 3 + \frac{1}{2} - \frac{1}{216} + \cdots \Rightarrow |\sqrt{10} - 3.16666| < \frac{1}{216} < \frac{1}{205} = 0.005 \]

Question 37 Solution
Since \(f(x) = \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + \cdots \) is an alternating series, we can use the error bound for alternating series: \(|s - s_n| \leq a_{n+1} \) where \(a_{n+1} = \frac{1}{(n+1)2^{n+1}} \). We are interested in estimating \(\ln \frac{3}{2} = \ln(1 + \frac{1}{2}) \); hence, we take \(x = \frac{1}{2} \). Let us find the smallest \(n \) such that \(a_{n+1} = \frac{1}{(n+1)2^{n+1}} \leq 0.001 \). We find that \(n = 6 \) and \(s_6 \approx 0.4047 \); the exact value is \(s = \ln \frac{3}{2} \approx 0.4055 \), so the error is less than \(10^{-3} \), as desired.

Question 38 Solution
a) \(\tan x = x + \frac{x^3}{3} + \cdots \) Remainder
b) \(e^{-x} \sin x = x - x^2 + \cdots \) Remainder
c) \(\frac{1 - \cos x}{x} = \frac{1}{2}x - \frac{1}{24}x^3 + \cdots \) Remainder

Question 39 Solution
\(B_0 = f(0) = 1; B_1 = f'(0) = -\frac{1}{2}; B_2 = f''(0) = \frac{1}{6} \) (using L'Hospital rule).

Question 40 Solution
a) \(f(x) = x, f(0) = 0, f'(0) = 1 \)
b) \(f(x) = \sin x, f(0) = 0, f'(x) = \cos x, f'(0) = 1 \)
c) \(f(x) = \ln(1 + x), f(0) = 0, f'(x) = \frac{1}{1+x}, f'(0) = 1 \)

b) \(f(x) = e^x - 1, f(0) = 0, f'(x) = e^x, f'(0) = 1 \)

If the functions are sketched in a neighborhood of \(x = 0 \), the order they appear (from top to bottom), consider their Taylor approximations:
\[x, \sin x = x - \frac{x^3}{6} + \cdots, \ln(1 + x) = x - \frac{x^2}{2} + \cdots, e^x - 1 = x + \frac{x^2}{2} \]
Thus on right hand side of 0, from top to bottom, \(e^x - 1, x, \sin x \) and \(\ln(1 + x) \); on left hand side of 0, from top to bottom, \(e^x - 1, \sin x, x, \) and \(\ln(1 + x) \).

Question 41 Solution
a) \(J_0(x) = 1 - \frac{x^2}{4} + \frac{x^4}{64} - \cdots \) it is alternating series.
\[J_0'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n}(n!)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2n+2)x^{2n+1}}{2^{2n+2}((n+1)!)^2} \]
\[J_0''(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 2n(2n-1)x^{2n-2}}{2^{2n}(n!)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2n+2)(2n+1)x^{2n+1}}{2^{2n+2}((n+1)!)^2} \]
\[xJ_0''(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 2n(2n-1)x^{2n-1}}{2^{2n}(n!)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2n+2)(2n+1)x^{2n+1}}{2^{2n+2}((n+1)!)^2} \]
\[xJ_0'(x)'' + J_0'(x) + xJ_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}x^{2n+1}}{2^{2n}(n!)^2} \left[\frac{2n+2}{2^{2n}(n!)^2} + \frac{(2n+2)(2n+1)}{2^{2n+2}((n+1)!)^2} - 1 \right] = 0 \]
Thus \(J_0(x) \) satisfies \(xy'' + y' + xy = 0 \)

Question 42 Solution
\[f(t) = \sum_{n=0}^{\infty} t^n = 1 + t + t^2 + t^3 + t^4 + \cdots \]
a) step 1: differentiate the series, \(f'(t) = 1 + 2t + 3t^2 + 4t^3 + \cdots \)
step 2 : square the series, \(f^2(t) = (1 + t + t^2 + t^3 + \cdots) \cdot (1 + t + t^2 + \cdots) = 1 + 2t + 3t^2 + 4t^3 + \cdots\) Thus \(f'(t) = f^2(t)\), so \(f(t)\) satisfies the differential equation \(y' = y^2\) and we can check that the initial condition is \(f(0) = 1\).

b) \(y' = y^2 \Rightarrow \frac{dy}{dt} = y^2 \Rightarrow \frac{dy}{y^2} = dt \Rightarrow \int \frac{dy}{y^2} = \int dt \Rightarrow -\frac{1}{y} = t + C \Rightarrow y = \frac{1}{1+t}\), now apply initial condition \(t = 0, y = 1 \Rightarrow C = -1 \Rightarrow y = \frac{1}{1+t}\)

Since we showed in part (a) that \(f(t)\) satisfies the differential equation and initial condition, we obtain \(f(t) = \frac{1}{1+t}\). This is a round-about way of deriving the sum of a geometric series, \(f(t) = \sum_{n=0}^{\infty} t^n = 1 + t + t^2 + t^3 + \cdots = \frac{1}{1-t}\).

Question 43 Solution

a1) \(\int_0^\infty \sin x \cdot dx\) converges

pf: \(\int_0^\infty \sin x \cdot dx = \sum_{n=0}^{\infty} \int_{n\pi}^{(n+1)\pi} \sin x \cdot dx = \int_0^\pi \sin x \cdot dx + \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \sin x \cdot dx \leq \int_0^\pi \sin x \cdot dx + \sum_{n=1}^{\infty} \frac{1}{n+1} \cdot \sin x \cdot dx;\) the last step follows because \(x \geq n\pi\) in each interval; then we have \(\int_0^\infty \sin x \cdot dx \leq \int_0^\pi \sin x \cdot dx + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\); to evaluate the constant note that \(\lim_{n \to \infty} \frac{1}{n} = 0\) and the series converges by the AST

a2) \(\int_0^\infty \sin x \cdot dx\) diverges

pf: \(\int_0^\infty \sin x \cdot dx = \sum_{n=0}^{\infty} \int_{n\pi}^{(n+1)\pi} \sin x \cdot dx = \int_0^\pi \sin x \cdot dx + \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \sin x \cdot dx \geq \int_0^\pi \sin x \cdot dx + \sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin x \cdot dx;\) the last step follows because \(x \leq n+1\pi\) in each interval; then we have \(\int_0^\infty \sin x \cdot dx \geq \int_0^\pi \sin x \cdot dx + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin x \cdot dx = \int_0^\pi \sin x \cdot dx + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n+1} \cdot \sin x \cdot dx,\) which diverges because the series is the harmonic series

b) \(\int_0^\infty \sin x \cdot dx = -\frac{\pi}{2}\)

pf: set \(f(a) = \int_0^a \sin x \cdot e^{-ax} \cdot dx;\) then note that \(f(0) = \int_0^\infty \sin x \cdot dx;\) so we need to evaluate \(f(0);\) to do that we will evaluate \(f(a)\) and then set \(a = 0;\) to solve for \(f(a),\) we will find an expression for \(f'(a)\) and then integrate; hence we have \(f'(a) = \int_0^\infty \sin x \cdot \frac{x \cdot e^{-ax} \cdot dx}{dx} = \int_0^\infty \sin x \cdot e^{-ax} \cdot dx = -\int_0^\infty e^{-ax} \cdot dx\)

substitute: \(u = \sin x, dv = e^{-ax} \cdot dx \Rightarrow du = \cos x \cdot dx, v = \frac{e^{-ax}}{-a}\)

\(\Rightarrow f'(a) = -\left[\sin x \cdot \frac{e^{-ax}}{-a} \bigg|_0^\infty - \int_0^\infty \cos x \cdot \frac{e^{-ax}}{-a} \cdot dx\right] = -\frac{1}{a} \int_0^\infty \cos x \cdot e^{-ax} \cdot dx\)

substitute: \(u = \cos x, dv = e^{-ax} \cdot dx \Rightarrow du = -\sin x \cdot dx, v = \frac{e^{-ax}}{-a}\)

\(\Rightarrow f'(a) = -\frac{1}{a} \int_0^\infty \cos x \cdot \frac{e^{-ax}}{-a} \cdot dx + \frac{1}{a} \int_0^\infty \sin x \cdot \frac{e^{-ax}}{-a} \cdot dx\) \(\Rightarrow f'(a) = -\frac{1}{a} \left[\frac{1}{a} + \frac{1}{a} \cdot f'(a)\right] \Rightarrow f'(a) = -\frac{1}{a} \left[\frac{1}{a} + \frac{1}{a} \cdot f'(a)\right] \Rightarrow f'(a) = \frac{1}{a} \left[\frac{1}{a} + \frac{1}{a} \cdot f'(a)\right] \Rightarrow f'(a) = \frac{1}{a} \cdot f'(a) + \frac{1}{a^2} \Rightarrow f'(a) = \frac{1}{a^2 + 1} \Rightarrow f(a) = -\tan^{-1}(a) + C\); to evaluate the constant note that \(\lim_{a \to \infty} f(a) = \lim_{a \to \infty} \int_0^\infty \sin x \cdot e^{-ax} \cdot dx = \frac{\int_0^\infty \sin x \cdot dx}{\int_0^\infty \frac{1}{e^{-ax}} \cdot dx} = \frac{\int_0^\infty \sin x \cdot 0 \cdot dx}{\int_0^\infty 0 \cdot dx} = \frac{0}{0};\) hence we have \(\lim_{a \to \infty} f(a) = \lim_{a \to \infty} -\tan^{-1}(a) + C = -\tan^{-1}(\infty) + C = -\infty + C = C = \frac{\pi}{2} \Rightarrow f(a) = -\tan^{-1}(a) + \frac{\pi}{2} \Rightarrow f(0) = -\tan^{-1}(0) + \frac{\pi}{2} = \frac{\pi}{2} \Rightarrow f(0) = -\tan^{-1}(1) + \frac{\pi}{2}\) a2) \(\int_0^\infty \sin x \cdot dx\) diverges

Question 44 Solution

\(\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4} - \cdots;\) it is a convergent alternating series, so \(|\cos x - 1| = \frac{1}{2}x^2,\) and \(|\cos x - (1 - \frac{1}{2}x^2)| \leq \frac{1}{4}x^4;\) setting \(x = \frac{2}{5}\) gives the result

Question 45 Solution

\(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \cdot dt = \frac{2}{\sqrt{\pi}} \int_0^x (1-t^2 + \frac{t^4}{2} + \cdots) \cdot dt = \frac{2}{\sqrt{\pi}} (x - \frac{x^3}{3} + \frac{x^5}{10} + \cdots)\)

Question 46 Solution

a) \(\frac{a}{a+b} = \frac{a}{b} \cdot \frac{1}{1 + \frac{a}{b}} = \frac{a}{b} \cdot \frac{1}{1 - \left(-\frac{a}{b}\right)} = \frac{a}{b} \cdot \sum_{n=0}^{\infty} \left(-\frac{a}{b}\right)^n\)

\(\frac{a}{a+b} = \frac{a}{b} \left(1 - \frac{a}{b} + \frac{a^2}{b^2} + \cdots\right) = \frac{a}{b} - \frac{a^2}{b^2} + \frac{a^3}{b^3} + \cdots\)

b) Using the Binomial Series Theorem

\((1+x)^k = 1 + kx + \frac{k(k-1)x^2}{2} + \cdots \) for \(-1 < x < 1\)

\(\sqrt{R^2 - r^2} = R\sqrt{1 - \frac{r^2}{R^2}} = R \left(1 - \frac{r^2}{R^2}\right)^{\frac{1}{2}} = R \left[1 - \frac{1}{2} \cdot \frac{r^2}{R^2} + \frac{1}{2} \left(\frac{1}{2}-1\right) \left(-\frac{r^2}{R^2}\right)^2 + \cdots\right] = R - \frac{r^2}{2} \cdot \frac{r}{R} - \frac{r^2}{8} \cdot \frac{r}{R^2} + \cdots\)

Question 47 Solution
Starting from the Taylor series of \(f(x) \) about \(x = a \):

\[
f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots,
\]

replace \(x \to x + h, a \to x \). It follows that \(x - a \to (x + h) - x = h \), and the Taylor series becomes

\[
f(x + h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \cdots
\]

Question 48 Solution

a) let \(y = 0 \) \(\Rightarrow x = \pm (1 + \epsilon) \), let \(x = 0 \) \(\Rightarrow y = \pm 1 \)

b) Solve for \(y: y = f(x) = \pm \sqrt{1 - \left(\frac{x}{1 + \epsilon} \right)^2} \)

\[
A(\epsilon) = 2 \int_{(1+\epsilon)}^{1+\epsilon} \sqrt{1 - \left(\frac{x}{1 + \epsilon} \right)^2} \, dx = 4 \int_0^{1+\epsilon} \sqrt{1 - \left(\frac{x}{1 + \epsilon} \right)^2} \, dx
\]

c) \(A(\epsilon) = 4 \int_0^{1+\epsilon} \sqrt{1 - \left(\frac{x}{1 + \epsilon} \right)^2} \, dx = 4(1 + \epsilon) \int_0^1 \sqrt{1 - u^2} \, du = 4(1 + \epsilon) \frac{\pi}{4} = (1 + \epsilon)\pi \)

The first two nonzero terms are \(\pi + \pi \epsilon \).

Question 49 Solution

\[
V(x) = \frac{Gm_1}{x-x_1} + \frac{Gm_2}{x-x_2} \text{ for } x \to \infty \text{ ie., } x > x_1 \text{ and } x > x_2 \Rightarrow V(x) = \frac{Gm_1}{x-x_1} + \frac{Gm_2}{x-x_2}
\]

Using the hint set \(y = 1/x \), ie., \(x = 1/y \) and expand the potential in powers of \(y \)

\[
V(1/y) = \frac{Gm_1}{1/y-1} + \frac{Gm_2}{1/y-2} = \frac{Gm_1 y}{1-x_1 y} + \frac{Gm_2 y}{1-x_2 y}
\]

Using Geometric Series Formula \(\frac{1}{1-r} = \sum_{n=0}^{\infty} (x_i y)^n \) where \(i = 1,2 \)

\[
V(1/y) = Gm_1 y \sum_{n=0}^{\infty} (x_1 y)^n + Gm_2 y \sum_{n=0}^{\infty} (x_2 y)^n = Gm_1 \sum_{n=0}^{\infty} x_1^n y^{n+1} + Gm_2 \sum_{n=0}^{\infty} x_2^n y^{n+1}
\]

\[
= (Gm_1 + Gm_2) y + (Gm_1 x_1 + Gm_2 x_2) y^2 + (Gm_1 x_1^2 + Gm_2 x_2^2) y^3 + \cdots
\]

change \(y = \frac{1}{x} \) back

\[
V(x) = (Gm_1 + Gm_2) \frac{1}{x} + (Gm_1 x_1 + Gm_2 x_2) \frac{1}{x^2} + (Gm_1 x_1^2 + Gm_2 x_2^2) \frac{1}{x^3} + \cdots
\]

Thus \(a = (Gm_1 + Gm_2) \), \(b = (Gm_1 x_1 + Gm_2 x_2) \), and \(c = (Gm_1 x_1^2 + Gm_2 x_2^2) \)

Question 50 Solution

a) \(\lim_{r \to 0} V(r) = \lim_{r \to 0} V_0 \left(\frac{r}{12} \right)^2 - 2 \left(\frac{r}{6} \right)^6 = V_0 \lim_{r \to 0} \frac{r^{12} - 2r^6}{r^{12}} = V_0 \frac{r^{12}}{0} = \infty
\]

b) \(\lim_{r \to \infty} V(r) = \lim_{r \to \infty} V_0 \left(\frac{r}{12} \right)^2 - 2 \left(\frac{r}{6} \right)^6 = V_0 \lim_{r \to \infty} \frac{r^{12} - 2r^6}{r^{12}} = V_0 \cdot 0 = 0
\]

c) \(V'(r) = V_0 \left(-\frac{12r}{12} \frac{12r}{6} \frac{12r^6}{6} - 2 \frac{12r^6}{6} \right) = V_0 \left(-12r^2 + 12r^6 \right) = V_0 \left(-12r^2 + 12r^6 \right)
\]

\[
V'(r) = 0 \iff -12r^2 + 12r^6 = 0 \iff r^2 = 1 \iff r = r_0.
\]

d) Find the quadratic Taylor approximation at \(x = x_0 \), ie., \(c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 \)

using the Theorem

\[
(1 + x)^k = 1 + kx + \frac{k(k-1)}{2} x^2 + \cdots \text{ for } -1 < x < 1
\]

\[
V(x) = V_0 \left[\left(\frac{x - x_0}{x_0} \right)^{12} - 2 \left(\frac{x}{x_0} \right)^6 \right] = V_0 \left[\left(\frac{x - x_0}{x_0} \right)^{12} - 2 \left(\frac{x - x_0 + x_0}{x_0} \right)^6 \right]
\]

using the above Theorem

\[
\left(1 + \frac{x - x_0}{x_0} \right)^{-12} = 1 - 12 \frac{x - x_0}{x_0} + \frac{(-12)(-12-1)}{2} \left(\frac{x - x_0}{x_0} \right)^2 + \cdots = 1 - 12 \frac{x - x_0}{x_0} + \frac{78}{6} (x - x_0)^2 + \cdots
\]

\[
\left(1 + \frac{x - x_0}{x_0} \right)^{-6} = 1 - 6 \frac{x - x_0}{x_0} + \frac{(-6)(-6-1)}{2} \left(\frac{x - x_0}{x_0} \right)^2 + \cdots = 1 - 6 \frac{x - x_0}{x_0} + \frac{24}{6} (x - x_0)^2 + \cdots
\]

\[
V(x) = V_0 \left[1 - 12 \frac{x - x_0}{x_0} + \frac{78}{6} (x - x_0)^2 + \cdots \right] - 2 \left(1 - 6 \frac{x - x_0}{x_0} + \frac{24}{6} (x - x_0)^2 \right) \right] + \cdots
\]

\[
= V_0 \left[-1 + \frac{36}{x_0} (x - x_0)^2 \right] + \cdots = -V_0 + 36 \frac{V_0}{x_0} (x - x_0)^2 + \cdots
\]

\[
T_2(x) = -V_0 + 36 \frac{V_0}{x_0} (x - x_0)^2
\]

e) We know that work equals the integral of the force:

\[
W = \int_{r_0}^{\infty} f(r) dr = \int_{r_0}^{\infty} -V'(r) dr = -V(r) \bigg|_{r_0}^{\infty} = -0 - (-V(r_0)) = V(r_0) = V_0(1 - 2) = -V_0
\]
Question 51 Solution

Using the Binomial Series Theorem,
\[(1 + x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \frac{k(k-1)(k-2)(k-3)}{4!}x^4 + \cdots \text{ for } -1 < x < 1 \]
\[(1 + x^2)^k = 1 + kx^2 + \frac{k(k-1)}{2!}x^4 + \frac{k(k-1)(k-2)}{3!}x^6 + \frac{k(k-1)(k-2)(k-3)}{4!}x^8 + \cdots \]
\[(1 + x^3)^k = 1 + kx^3 + \frac{k(k-1)}{2!}x^6 + \frac{k(k-1)(k-2)}{3!}x^9 + \frac{k(k-1)(k-2)(k-3)}{4!}x^{12} + \cdots = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6 - \frac{5}{128}x^8 + \cdots \]

Using the second order Taylor approximation \(T_2(x) = 1 + \frac{1}{2}x^2\), \(|S - T_2| \leq a_3 = \frac{1}{8}x^4\) where \(S\) denotes the exact value.

The error is bound by \(\int_{1}^{x} x^4 \, dx = \frac{1}{4}x^5\bigg|_0^1 = \frac{1}{4}\)

binomial series

Question 52 Solution

a) Show that \(\binom{k+1}{n+1} = \binom{k}{n} + \binom{k}{n+1}\)

This is true since the left hand side is number of ways of choosing \(n+1\) objects from a set of \(k+1\) objects (disregarding the order in which the objects are chosen).

The right hand side means that: assume all \(k+1\) objects are white, one may randomly pick one object from the \(k+1\) objects, coloring it red, then put it back. Now choose \(n+1\) objects from these \(k+1\) objects, there are two different situations: one situation is that the red one is chosen, the number of ways is \(\binom{k}{n}\) (it is equivalent to choosing \(n\) from \(k\) objects); the other situation is the red one is not chosen, the number of ways is \(\binom{k}{n+1}\) (it is equivalent to choosing \(n+1\) objects from \(k\) objects).

The left hand side equals the right hand side, since it is the same thing, choosing \(n+1\) objects from \(k+1\) objects.

\[
\binom{k+1}{n+1} = \frac{(k+1)!}{(n+1)!(k-n)!} = \frac{k!(k+1)}{(n+1)!(k-n)!} = \frac{k!(k+1)(n+1)}{(n+1)!(k-n-1)!} = \frac{k!(k+1)}{(n+1)!(k-n)!(k-n+1)!} = \binom{k+1}{n+1} + \binom{k}{n+1}
\]

b) \[
\binom{0}{0}, \binom{0}{1}, \binom{1}{1}, \binom{2}{1}, \binom{2}{2}, \binom{3}{1}, \binom{3}{2}, \binom{3}{3}, \binom{4}{1}, \binom{4}{2}, \binom{4}{3}, \binom{4}{4}, \binom{5}{1}, \binom{5}{2}, \binom{5}{3}, \binom{5}{4}, \binom{5}{5}
\]

Denote elements in the triangle as \(a_{k,n}\), \(k\)th element on \(k\)th row. Each subsequent row is obtained by adding the two entries diagonally above,

\(a_{k+1,n+1} = a_{k,n} + a_{k,n+1}\), i.e. \(\binom{k+1}{n+1} = \binom{k}{n} + \binom{k}{n+1}\).

c) The next two rows are added in b).

\((a+b)^6 = \binom{6}{0}a^6 + \binom{6}{1}a^5b + \binom{6}{2}a^4b^2 + \binom{6}{3}a^3b^3 + \binom{6}{4}a^2b^4 + \binom{6}{5}ab^5 + \binom{6}{6}b^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6\)

complex numbers

Question 53 Solution

a) \(1 + i = \sqrt{2}e^{\frac{i\pi}{4}}\) (\(x = 1, y = 1\) already in Cartesian form)

b) \((1 + i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i = 2e^{\frac{i\pi}{2}}\) \((x = 0, y = 2)\)

c) \((1 + i)^3 = (1 + i)^2(1 + i) = 2i(1 + i) = -2 + 2i = 2\sqrt{2}e^{\frac{3i\pi}{4}}\) \((x = -2, y = 2)\)

d) \(\frac{1}{1+i} = \frac{(1-i)}{(1+i)(1-i)} = \frac{1-i}{1-i} = \frac{1}{1} = 1 = \frac{1}{\sqrt{2}}e^{-\frac{i\pi}{4}}\) \((x = 1, y = -1)\)

e) \(\sqrt{1+i} = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)\frac{1}{2} = \frac{1}{2}e^{\frac{i\pi}{4}}\) \((x = 2, y = 2)\)

Question 54 Solution

a) See 49 c) \((1 + i)^6 = 1 + 6i + 15i^2 + 20i^3 + 15i^4 + 6i^5 + i^6 = 1 + 6i - 15 - 20i + 15 + 6i - 1 = -8i\)

b) \(1 + i = \sqrt{2}e^{\frac{i\pi}{4}},\) since \(x = 1, y = 1, r = \sqrt{x^2 + y^2} = \sqrt{2}, \theta = \arctan \frac{y}{x} = \arctan 1 = \frac{\pi}{4}, r^e^{\theta i} = \sqrt{2}e^{\frac{i\pi}{4}}\)

\((1 + i)^6 = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^6 = \sqrt{2}^6 e^{\frac{6i\pi}{4}} = 8\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -8i\)

Question 55 Solution

a) \(z^2 + 2z - 2 = 0 \Rightarrow a = 1, b = 2, c = -2, z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 - 4(-2)}}{2} = \pm 1 + \sqrt{3} \text{ two real roots}\)

b) \(z^2 + 2z + 2 = 0 \Rightarrow a = 1, b = 2, c = 2, z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 - 4(2)}}{2} = \pm 1 \pm \sqrt{-1} = -1 \pm i\)

c) \(z^3 = (re^{i\theta})^3 = r^3e^{3i\theta} = 1 \Rightarrow r = 1, \theta = \pi k, \text{ where } k \text{ is any integer} \Rightarrow z_{1,2} = \pm 1\)

d) \(z^3 = r^3e^{3i\theta} = 1 \Rightarrow r = 1, \theta = \pi k, \text{ where } k \text{ is any integer} \Rightarrow \text{ three roots: } z_1 = 1, z_{2,3} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\)
e) $z^4 = r^4 e^{4i\theta} = 1 \Rightarrow z^2 = \pm 1 \Rightarrow$ four roots: $z_{1,2} = \pm 1, z_{3,4} = \pm i$

f) $e^z = 1$ on real axis there is on root $z = 0$, but in complex plane there are infinite roots, let $z = x + yi, e^z = e^{x+yi} = e^x (\cos y + i \sin y) = 1 \Rightarrow x = 0$ and $y = 2k\pi, \text{ where } k \text{ is any integer, roots are } z_k = 2k\pi i$.

Question 56 Solution

$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta$

Question 57 Solution

$e^{(a+b)} = e^{ia}e^{ib} \Rightarrow \cos(a+b) + i \sin(a+b) = (\cos a + i \sin a) \cdot (\cos b + i \sin b) = \cos a \cos b - \sin a \sin b + i(\sin a \cos b + \cos a \sin b)$

take real and imaginary parts: $\cos(a+b) = \cos a \cos b - \sin a \sin b$, $\sin(a+b) = \sin a \cos b + \cos a \sin b$

Question 58 Solution

a) $\int e^{ax} \cos bx \, dx = \int e^{ax} \frac{1}{b} \, d \sin bx = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{1}{b} \sin bx \, de^{ax} = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{a}{b} e^{ax} \sin bx \, dx = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{a}{b} e^{ax} \frac{1}{b} \, d \cos bx = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx - \frac{a}{b} \int \cos bx \, de^{ax} = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx$.

$b) \int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx \Rightarrow \int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \cdot \sin bx + a \cdot \cos bx)$

Question 59 Solution

a) since $e^{ix} = \cos x + i \sin x$ and $e^{-ix} = \cos x - i \sin x \Rightarrow e^{ix} + e^{-ix} = 2 \cos x \Rightarrow \cos x = \frac{e^{ix} + e^{-ix}}{2}$

b) $e^{ix} - e^{-ix} = 2i \sin x \Rightarrow \sin x = \frac{e^{ix} - e^{-ix}}{2i}$

c) $\frac{d}{dx} \cos x = \frac{d}{dx} \left(e^{ix} - e^{-ix} \right) = \frac{ie^{ix} - (-ie^{-ix})}{2i} = \frac{i(e^{ix} - e^{-ix})}{2i} = \frac{e^{ix} + e^{-ix}}{2} = -\sin x$.

d) $\frac{d}{dx} \sin x = \frac{d}{dx} \left(e^{ix} - e^{-ix} \right) = \frac{ie^{ix} + (-ie^{-ix})}{2i} = \frac{i(e^{ix} + e^{-ix})}{2i} = \frac{e^{ix} - e^{-ix}}{2} = \cos x$

e) TO BE COMPLETED

f) TO BE COMPLETED

g) TO BE COMPLETED

h) TO BE COMPLETED