Problem 1: Consider the following

\[\frac{d^2x}{dt^2} + \alpha x = \Gamma \cos \omega t \]

The solution to this equation was provided in class. Run simulations for this equation by varying \(\omega \) for some fixed \(\alpha \) and consider conditions when \(\omega^2 \to \alpha \). What do you noticing happening to the solution as you get closer to \(\alpha \)?

Problem 2: Now introduce damping, using a constant damping coefficient, \(k \). What does the equation become? Vary both \(k \) and \(\omega \) and explain the differences between the solutions in 1 and the solutions you are now seeing. What is different about the solution? What happens as \(\omega^2 \to \alpha \)?

Problem 3: To introduce the effects of nonlinearity on resonance consider an example of the Duffing equation with no damping and a weak non-linearity.

\[\frac{d^2x}{dt^2} + \Omega^2 x - \epsilon x^3 = \Gamma \cos t \]

In this case we simply let \(\omega = 1 \). Find the order one solution for the equation and the order \(\epsilon \) solution. Consider the periodicity condition \(x(\epsilon, t + 2\pi) = x(\epsilon, t) \) What does the solution tell you about resonance? Run some simulations for \(\Omega \) near resonance.

Problem 4: Now consider the full Duffing equation,

\[\frac{d^2x}{dt^2} + k \frac{dx}{dt} + \alpha x - \delta x^3 = \Gamma \cos \omega t \]

Run simulations for varying parameters and explain what you are seeing? Try at least three different cases.