The characteristic: \(x = a(u)t + s \). Solution \(u(a(u)t + s, t) = h(s) \), or \(u = h(x - a(u)t) \).

We have the Rankine-Hugoniot condition: If \(u \) is a piecewise \(C^1 \) solution has discontinuity along \(y = y(t) \). Then

\[
y'(t) = \frac{f(u_l) - f(u_r)}{u_l - u_r},
\]

where

\[
u_l = \lim_{x \to y(t)^-} u(x, t), \quad u_r = \lim_{x \to y(t)^+} u(x, t).
\]

Example: Assume \(a'(u) > 0 \).

\[
\begin{aligned}
 u_t + (f(u))_x &= 0 \\
 u(0) &= \begin{cases}
 u_l, & x < 0 \\
 u_r, & x > 0
 \end{cases}
\end{aligned}
\]

Then \(y'(t) = \frac{f(u_l) - f(u_r)}{u_l - u_r} := \sigma \).

If \(u_l > u_r \):

\[
 u(x, t) = \begin{cases}
 u_l, & x < \sigma t \\
 u_r, & x > \sigma t
 \end{cases}
\]

is the unique solution satisfies the Rankine-Hugoniot condition.

If \(u_l < u_r \), then from the characteristics, one knows that we have trouble to determine the solution \(u \) in the region between \(x = a(u_l)t \) and \(x = a(u_r)t \). One possibility is that we can define

\[
 u(x, t) = \begin{cases}
 u_l, & x < \sigma t \\
 u_r, & x > \sigma t
 \end{cases}
\]

for \(\sigma = \frac{f(u_l) - f(u_r)}{u_l - u_r} \). Then \(u \) is a solution satisfies the Rankine-Hugoniot condition. The problem is that this solution is not continuous, while from some physical considerations, we expect \(u \) to be continuous in this case. Note that \(u \) is constant along characteristics, we have \(u(x, t) = v(\xi \frac{x}{t}) \) for some \(v \). Then

\[
u_t + a(u)u_x = -\frac{x}{t^2} v'(\xi \frac{x}{t}) + \frac{1}{t} a(x)v'(\xi \frac{x}{t}) = 0.
\]

So

\[
a(v(\xi)) = \xi,
\]
where $\xi = \frac{x}{t}$. Then we can define a solution
\[
 u(x,t) = \begin{cases}
 u_l, & x < a(u_l)t \\
 a^{-1}(\frac{x}{t}), & a(u_l)t < x < a(u_r)t \\
 u_r, & x > a(u_r)t.
\end{cases}
\]

Riemann Problem: Initial data is piecewise constant.

Why do we care about it? The solution to Riemann problem is self similar, i.e., it satisfies $u(x,t) = \lambda^p u(\lambda x, \lambda^q t)$, for some $p, q, \forall \lambda > 0$. Self similar solution is scale invariant, which should govern the typical behavior of the solution.

Check: If $u = u(x,t)$ is a solution of $u_t + f(u)_x = 0$, then $u_\lambda = u(\lambda x, \lambda t)$ is also a solution. Then take $t = 0$, we have $u(\lambda x, 0) = u(x,0)$, so $u(x,0)$ must be piecewise constant (for $x > 0$, $u(x,0) \equiv u(1,0)$, for $x < 0$, $u(x) = u(-1,0)$).

Lax entropy condition (applies to f convex)

The characteristic starting from either side of the discontinuity when tracked in backward time direction should hit the original time $t = 0$, i.e.,

$$a(u_l) > \sigma > a(u_r), \quad \sigma = \frac{f(u_l) - f(u_r)}{u_l - u_r}.$$

Definition 0.1. A discontinuity is called a shock if it satisfies the Rankine-Hugoniot condition and the entropy condition.

Definition 0.2. We say a piecewise C^1 solution is admissible if all discontinuities are shock.

Consider $u_t + f(u)_x = 0$, assume that u is the density.

Idea: Any discontinuous solution should be the (zero viscosity) limit of the unique viscosity solution

$$u_t + f(u)_x = \epsilon u_{xx}.$$

Assume that $u(x,t)$ is an admissible travelling wave solution to $u_t + f(u)_x = 0$, then it should be the limit of a unique smooth solution of

$$u_t + f(u)_x = \epsilon u_{xx}.$$

Ansatz: $u_t + f(u)_x = \epsilon u_{xx}$.

Travelling wave: $u(x,t) = \phi(\frac{x-at}{\epsilon})$. Then $u_t = -\frac{a}{\epsilon} \phi'(\frac{x-at}{\epsilon})$, $f(u)_x = (f \circ \phi)'(\frac{x}{\epsilon})$.

As $\epsilon \rightarrow 0$, we expect that $\phi(\frac{x-at}{\epsilon}) \rightarrow u$, then it natural to enforce the condition $\phi(-\infty) = u_l$, $\phi(\infty) = u_r$. We can also assume that the wave is flat at ∞, so we assume $\phi'(-\infty) = \phi'(\infty) = 0$. Then we reduce to finding solutions to the problem

\[
\begin{cases}
-\sigma \phi' + (f \circ \phi)' = \dot{\phi}' \\
\phi(-\infty) = u_l, \phi(\infty) = u_r \\
\phi'(-\infty) = \phi'(\infty) = 0 \end{cases}
\]

(0.3)

Then we have $-\sigma \phi + f \circ \phi + c = \phi'$, plug in $x = -\infty$, we get $-\sigma u_l + f(u_l) + c = 0$, so $c = \sigma u_l - f(u_l)$. So we consider the problem

\[
\begin{cases}
\dot{\phi}' = -\sigma(\phi - u_l) + f(\phi) - f(u_l) \\
\phi(-\infty) = u_l, \phi(\infty) = u_r \end{cases}
\]

(0.4)
Assume \(u_l > u_r \), and assume (0.4) has a solution \(\phi \), then \(\phi' < 0 \) at at least one point.

Claim: \(\phi' < 0, \forall x \).

If not, there is \(x_0 \) such that \(\phi'(x_0) = 0 \). Then we consider the IVP

\[
\begin{align*}
\phi' &= -\sigma(\phi - u_l) + f(\phi) - f(u_l) \\
\phi(x_0) &= u_0
\end{align*}
\]

We note that \(\phi_1 \equiv u_0 \) is a solution of (0.5). But \(\phi \) is also a solution of (0.5), which is a contradiction. So \(\phi'(x) < 0 \) for all \(x \in \mathbb{R} \). So we have

\[-\sigma(\phi - u_l) + f(\phi) - f(u_l) < 0, \forall \phi \in (u_r, u_l).\]

Claim 2: \(\sigma = \frac{f(u_l) - f(u_r)}{u_l - u_r} \). This is because \(\phi'(-\infty) = \phi'(\infty) = 0 \).

So we have

\[\sigma < \frac{f(\phi) - f(u_l)}{\phi - u_l}, \forall \phi \in (u_r, u_l).\]

This is called Olenik entropy condition. Note that for Olenik entropy, we don’t require \(f \) to be convex.

If \(u_l < u_r \), we can obtain the similar result.

Claim: If \(u_l < u_r \), then viscosity profile \(\phi \) must satisfy \(\phi' > 0 \), and so

\[\sigma < \frac{f(\phi) - f(u_l)}{\phi - u_l}, \forall \phi \in (u_l, u_r).\]

Definition 0.6 (Olenik entropy condition). A piecewise \(C^1 \) solution is admissible if

\[\frac{f(u_l) - f(u_r)}{u_l - u_r} < \frac{f(u) - f(u_l)}{u - u_l},\]

for all \(u \in (u_l, u_r) \) if \(u_l < u_r \), \(u \in (u_r, u_l) \) if \(u_r < u_l \).