ABSTRACT. Let k denote a field with discrete valuation. We assume that k is complete with perfect residue field \mathfrak{f}. Let G denote the group of k-rational points of a reductive, linear algebraic group G defined over k. A torus in G is said to be unramified if it splits over an unramified extension of k. Let \mathcal{C} denote the set of conjugacy classes of maximal unramified tori in G. Let I^a denote the set of pairs (F, T) where F is a facet in the Bruhat-Tits building of G and T is a maximal \mathfrak{f}-anisotropic torus in G_F (the connected reductive \mathfrak{f}-group associated to F). There is a natural equivalence relation, to be denoted \sim, on I^a. We show that there is a bijective correspondence between the set I^a / \sim and \mathcal{C}.

0. INTRODUCTION

Let k denote a field with discrete valuation. We assume that k is complete with perfect residue field \mathfrak{f}. Let G denote the group of k-rational points of a reductive, linear algebraic group G defined over k. Let G^0 denote the group of k-rational points of the identity component G^0 of G. Let $\mathcal{B}(G)$ denote the Bruhat-Tits building of G^0.

A torus in G is called unramified if it splits over an unramified extension of k. In this paper we classify the conjugacy classes of maximal unramified tori in G in terms of equivalence classes of pairs (G_F, T). Here F is a facet in the building, G_F is the connected reductive \mathfrak{f}-group associated to F, and T is an \mathfrak{f}-anisotropic maximal torus in G_F.

The motivation for this result comes from harmonic analysis; specifically, from J.-L. Waldspurger’s papers [10, 11]. It is hoped that the classification scheme discussed in this paper will lead to a better understanding of the harmonic analysis problems considered in [10, 11].

We now discuss the contents of this paper.

Let I denote the set of pairs (F, T) where F is a facet in $\mathcal{B}(G)$ and T is a maximal \mathfrak{f}-torus in G_F. In §3.2 we define on I an equivalence relation, denoted \sim.

In §3.3 we associate to each element $(F, T) \in I$ a conjugacy class $\mathcal{C}(F, T)$ of maximal unramified tori. The set I is too large, so we restrict our attention to the subset I^a of anisotropic pairs in I. A pair $(F, T) \in I$ is said to be anisotropic if the maximal \mathfrak{f}-split torus in T coincides with the maximal \mathfrak{f}-split torus in the center of G_F.

Date: January 26, 2001.
1991 Mathematics Subject Classification. Primary 22G25; Secondary 17B45, 20G15.
Key words and phrases. Bruhat-Tits building, maximal unramified tori, reductive group.
Supported by National Science Foundation Postdoctoral Fellowship 98-04375.
PREPRINT
We now state Theorem 3.4.1, the main result of this paper. Let \mathcal{C} denote the set of conjugacy classes of maximal unramified tori in G.

Theorem. There is a bijective correspondence between I^a / \sim and \mathcal{C} given by the map which sends (F, T) to $\mathcal{C}(F, T)$.

If our group is connected, reductive, and k-split, then this result can be derived from some work of Paul Gérardin [6]. If our group is connected, reductive, and unramified, then Waldspurger [10] stated a variant of this result as a hypothesis.

We remark that if k is algebraically closed, then \mathcal{C} and I^a / \sim both have one element. In this case, the element of \mathcal{C} is the conjugacy class of maximal k-split tori in G, and I^a consists of those pairs (F, T) where F is an alcove in $B(G)$ and T is a maximal torus in G_F.

Let K denote a fixed maximal unramified extension of k. From Lemma 2.1.1 a maximal unramified torus in G is the group of k-rational points of a maximal K-split torus which is defined over k. From a theorem of Steinberg, G^o is quasisplit over K. Thus, the centralizer in G^o of a maximal unramified torus is the group of k-rational points of a maximal k-torus. Since this correspondence is one-to-one, our theorem also provides a classification of the G-conjugacy classes of maximal k-tori which arise in this way.

This paper has benefitted from discussions with Jeff Adler, Roman Bezrukavnikov, Robert Kottwitz, Amritanshu Prasad, Gopal Prasad, Paul J. Sally, Jr., and Jiu-Kang Yu. It is a pleasure to thank all of these people.

1. **NOTATION**

In addition to the notation discussed in the introduction, we will require the following.

1.1. **Basic notation.** Let k denote a field with discrete valuation ν. We assume that k is complete and the residue field \mathfrak{f} is perfect.

Let K be a fixed maximal unramified extension of k. Let \mathfrak{F} denote the residue field of K. Note that \mathfrak{F} is an algebraic closure of \mathfrak{f}.

Let $\Gamma = \text{Gal}(K/k)$.

Let G be a linear algebraic group defined over k. We assume that the identity component G^o of G is reductive. We let $G = G(k)$, the group of k-rational points of G. Let $G^o = G^o(k)$. $\mathcal{D}G^o$ will denote the group of k-rational points of the derived group of G^o.

When we talk about a torus in G, we mean the group of k-rational points of a k-torus in G^o.

In order to avoid a proliferation of superscripts, we adopt the following convention. We shall call a subgroup of G a parabolic subgroup of G provided that it is a parabolic subgroup of G^o. We adopt a similar convention with respect to tori and Levi subgroups.

If $g, h \in G$, then $^gh = g^h g^{-1}$.

If a group H acts on a set S, then S^H denotes the set of H-fixed points of S.

1.2. **Apartments, buildings, and associated notation.** Let $B(G) = B(G, k)$ denote the (enlarged) Bruhat-Tits building of G^o. We identify $B(G)$ with the Γ-fixed points of $B(G, K)$, the
Bruhat-Tits building of $G^o(K)$. Let $\mathcal{B}^\text{red}(G)$ denote the reduced Bruhat-Tits building of G^o, that is, $\mathcal{B}^\text{red}(G) = \mathcal{B}(\mathcal{D}G^o)$.

For a k-Levi subgroup M of G, we identify $\mathcal{B}(M, k)$ in $\mathcal{B}(G, k)$. There is not a canonical way to do this, but every natural embedding of $\mathcal{B}(M, k)$ in $\mathcal{B}(G, k)$ has the same image.

Given a maximal k-split torus S defined over k we have the torus $S = S(k)$ in G and the corresponding apartment $A(S) = A(S, k)$ in $\mathcal{B}(G)$. Let T be a maximal K-split k-torus containing S [3, Corollaire 5.1.12]. We identify $A(S, k)$ with $A(T, K)^\Gamma$.

For $\Omega \subset A(S)$, we let $A(A(S), \Omega)$ denote the smallest affine subspace of $A(S)$ containing Ω.

Suppose $x \in \mathcal{B}(G)$. We will denote the parahoric subgroup of G^o attached to x by G_x, and we denote its pro-unipotent radical by G^+_x. Note that both G_x and G^+_x depend only on the facet of $\mathcal{B}(G)$ to which x belongs. If F is a facet in $\mathcal{B}(G)$ and $x \in F$, then we define $G_F = G_x$ and $G^+_F = G^+_x$. Recall that G_x is a subgroup of $\text{stab}_{G^o}(x)$. For a facet F in $\mathcal{B}(G)$ the quotient G_F / G^+_F is the group of \mathfrak{f}-rational points of a connected reductive group G_F defined over \mathfrak{f}.

We denote the parahoric subgroup of $G^o(K)$ corresponding to $x \in \mathcal{B}(G, K)$ by $G(K)_x$. We denote the pro-unipotent radical of $G(K)_x$ by $G(K)^+_x$. The subgroups $G(K)_x$ and $G(K)^+_x$ depend only on the facet of $\mathcal{B}(G, K)$ to which x belongs. If F is a facet in $\mathcal{B}(G, K)$ and $x \in F$, then we define $G_K(F) = G(K)_x$ and $G(K)_F^+ = G(K)^+_x$. For a facet F in $\mathcal{B}(G, K)$, the quotient $G(K)_F / G(K)_F^+$ is the group of \mathfrak{g}-rational points of a connected, reductive \mathfrak{g}-group $G_K(F)$.

Suppose F is a Γ-invariant facet in $\mathcal{B}(G, K)$. In this case, $F^\Gamma = F^{\Gamma}$ is a facet in $\mathcal{B}(G)$. Moreover, we have $G_F^\Gamma = (G(K)_F)^\Gamma$, $G^+_F = (G(K)_F^+)^\Gamma$, and $G_F = G_{F^\Gamma}$ (in particular, G_F is defined over \mathfrak{f}). Sometimes, we will abuse notation and denote by G_F (resp., G_F^+, resp., $G(K)_F$, resp., $G(K)^+_F$) the group G_{F^Γ} (resp., $G^+_{F^\Gamma}$, resp., $G(K)_F$, resp., $G(K)^+_F$).

2. Tori over k and \mathfrak{f}

In this section we show how to move between tori over \mathfrak{f} and tori over k.

2.1. Maximal unramified tori. We recall that a torus T of G is unramified if T is the group of k-rational points of a k-torus which splits over an unramified extension of k. The following result will be used throughout the remainder of the paper.

Lemma 2.1.1. Suppose T is a torus in G. The following statements are equivalent.

1. $T(k)$ is a maximal unramified torus of G.
2. T is a maximal K-split k-torus of G.
3. T is a maximal K-split torus of G and T is defined over k.

Proof. By definition, we have (1) and (2) are equivalent. Moreover, (3) implies (2).

We now show (2) implies (3). Suppose T is a maximal K-split k-torus. Let $M = C_{G^o}(T)$. Then M is a K-Levi subgroup of G which is defined over k. Let S' be a maximal k-split torus in M. From [3, Corollaire 5.1.12], there exists a maximal K-split torus $S \subset M$ such that $S' \subset S$ and S is defined over k. Note that S is also a maximal K-split torus in G. Since $S \subset M$, we have $T \subset S$. Since S and T are K-split k-tori and T is maximal in G with respect to this property, we must have $T = S$. \qed
2.2. From maximal unramified tori over \(k \) to tori over \(f \). Suppose \(T \) is a maximal unramified torus in \(G \). Let \(T \) denote the maximal \(K \)-split \(k \)-torus in \(G \) such that \(T = T(k) \). Define

\[
T(K)_c := \{ t \in T(K) \mid \nu(\chi(s)) = 0 \text{ for all } \chi \in X^*(T) \}
\]

From [9, §3.6.1] there is a natural embedding of \(B(T) \) in \(B(G) \); namely,

\[
B(T) = B(T, K)^G = A(T, K)^G \\
= (B(G, K)^{T(K)_c})^G = B(G, K)^{T(K)_c \cdot G}
\]

\(\subset B(G) \).

We shall always think of \(B(T) \) as being embedded in \(B(G) \) in this way. We now collect some facts about \(B(T) \).

Lemma 2.2.1. Suppose \(T \) is a maximal \(K \)-split torus which is defined over \(k \). Let \(T \) denote the group of \(k \)-rational points of \(T \).

1. \(B(T) \) is a nonempty, closed, convex subset of \(B(G) \). Moreover, \(B(T) \) is the union of the facets in \(B(G) \) which meet it.
2. There is a maximal \(k \)-split torus \(S \) in \(G \) such that \(B(T) \) is an affine subspace of \(A(S, k) \).
3. For all facets \(F \) in \(B(T) \), there exists \((F, T) \in I \) such that the image of \(T(K) \cap G(K)_F \) in \(G_F(\mathfrak{g}) \) is \(T(\mathfrak{g}) \). Moreover, if \(F \) is a maximal facet in \(B(T) \), then \((F, T) \in I^a \).
4. If \(F_1 \) and \(F_2 \) are maximal facets in \(B(T) \), then for all apartments \(A \) in \(B(G) \) containing \(F_1 \) and \(F_2 \) we have \(A(A, F_1) = A(A, F_2) \).

Proof. “(1)”: Since \(B(T) \) is the Bruhat-Tits building of \(T \), the first half of the statement follows from the work of Bruhat and Tits [2, 3].

For any \(\Gamma \)-invariant facet \(F \) of \(B(G, K) \), we have \(F^\Gamma = F \cap B(G) \) is a facet of \(B(G) \). Consequently, for any \(\Gamma \)-invariant facet \(F \) of \(B(T, K) \subset B(G, K) \), we have that \(F^\Gamma \) is a facet of \(B(G) \) which is contained in \(B(T) \).

“(2)”: From [1, Proposition 8.15] we can write \(T = T_s \cdot T_a \) where \(T_s \) the maximal \(k \)-split torus in \(T \) and \(T_a \) is the maximal \(k \)-anisotropic subtorus of \(T \). Let \(M = C_{G^0}(T_s) \). Then \(T \subset M \) and \(M \) is a \(k \)-Levi subgroup. Let \(M \) denote the group of \(k \)-rational points of \(M \). We have that the image of \(B(T) \) in \(B^{\text{red}}(M) \) is a point, call it \(x_T \). Let \(S \) be a maximal \(k \)-split torus in \(M \) such that the image (apartment) of \(A(S, k) \) in \(B^{\text{red}}(M) \) contains \(x_T \). Since \(T_s \subset S \), we have \(B(T) \subset A(S, k) \).

“(3)”: Suppose \(F \) is a facet in \(B(T) \). Let \(T \) be the maximal \(f \)-torus in \(G_F \) corresponding to the image of \(T(K) \cap G(K)_F \) in \(G_F(\mathfrak{g}) \). We have \((F, T) \in I \).

Now suppose that \(F \) is a maximal facet in \(B(T) \). Choose \(T \) as in the previous paragraph. Let \(T_s \) be the maximal \(k \)-split torus in \(T \). Let \(T_s \) denote the \(f \)-split torus in \(G_F \) corresponding to the image of \(T_s(K) \cap G(K)_F \) in \(G_F(\mathfrak{g}) \). We have that \(T_s \) is the maximal \(f \)-split torus in \(T \). If we embed \(B(T_s, K) \) in \(B(T, K) \subset B(G, K) \) in the natural way, then we have \(B(T_s(k)) = B(T) \).

As in the proof of part (2) we may choose a maximal \(k \)-split torus \(S \) such that \(B(T) \subset A(S, k) \) and \(T_s \subset S \). Since \(F \) is a maximal facet in \(B(T) \), we have that an affine root of \(S \) with respect
to G°, k, and ν is zero on $B(T_s(k)) = B(T)$ if and only if it is zero on F. It follows that T_s is the maximal \mathfrak{f}-split torus in the center of G_F. Thus $(F, T) \in I^a$.

“(4)”: Let A be an apartment in $B(G)$ containing F_1 and F_2. Since F_1 is maximal in $B(T)$ and $B(T)$ is convex, we conclude that $F_2 \subseteq A(A, F_1)$. Similarly, we have $F_1 \subseteq A(A, F_2)$. Thus $A(A, F_1) = A(A, F_2)$.

The previous lemma gives us a way to associate to a maximal unramified torus in G a pair $(F, T) \in I^a$. We now examine how unique this association is.

Lemma 2.2.2. Suppose T_1 and T_2 are maximal K-split tori which are defined over k. If F is a Γ-invariant facet in $A(T_1, K) \cap A(T_2, K)$ and the images of $T_1(K) \cap G(K)_F$ and $T_2(K) \cap G(K)_F$ in $G_F(\mathfrak{g})$ coincide, then T_1 and T_2 are $G_F^\mathfrak{g}$-conjugate.

Proof. Let T denote the maximal torus in G_F whose group of \mathfrak{g}-rational points is the image of $T_1(K) \cap G(K)_F$ in $G_F(\mathfrak{g})$. Note that T is defined over \mathfrak{f}.

Let Z denote the centralizer of T_1 in G°. The group Z is a K-Levi subgroup (and maximal torus) of G which is defined over k. Note that $B(Z, K) = A(T_1, K)$ and so for all facets F in $A(T_1, K)$ we have $Z(K)_F = Z(K) \cap G(K)_F$ and $Z(K)_F^\mathfrak{g} = Z(K) \cap G(K)_F^\mathfrak{g}$.

There exists an $h \in G(K)_F^\mathfrak{g}$ such that $hT_1 = T_2$. Let \overline{h} denote the image of h in $G_F(\mathfrak{g})$. By hypothesis, $\overline{h}T = T$. Thus, $\overline{h} \in (N_{G_F}(T_1))(\mathfrak{g})$. Consequently, there exists an $n \in (N_{G^\circ}(T_1))(K) \cap G(K)_F$ and $g \in G(K)_F^\mathfrak{g}$ such that $h = gn$. We have $T_2 = hT_1 = gT_1$.

For $\gamma \in \Gamma$, let $c_g(\gamma) := g^{-1}\gamma(g)$; c_g is a one-cocycle. We will show that $c_g(\gamma) \in Z(K)_F^\mathfrak{g}$ for all $\gamma \in \Gamma$. Fix $\gamma \in \Gamma$. Since F is Γ-stable and $g \in G(K)_F^\mathfrak{g}$, we have $c_g(\gamma) \in G(K)_F^\mathfrak{g}$. Since $g(\gamma)T_1 = T_1$, we have $c_g(\gamma) \in N_{G_F}(T_1)(K)$. Thus $A(T_1, K)$ is $c_g(\gamma)$-stable. If C is an alcove in $A(T_1, K)$ such that $F \subset \overline{C}$, then $c_g(\gamma)$ fixes C point-wise and therefore $c_g(\gamma)$ fixes $A(T_1, K)$. Thus, we conclude that $c_g(\gamma) \in Z(K)_F^\mathfrak{g}$.

Since $H^1(\Gamma, Z(K)_F^\mathfrak{g})$ is trivial, there exists $z \in Z(K)_F^\mathfrak{g}$ such that gz is fixed by Γ. We have $g^zT_1 = T_2$ and $gz \in (G(K)_F^\mathfrak{g})^{-\Gamma} = G_F^\mathfrak{g}$.

2.3. From tori over \mathfrak{f} to tori over k.

Suppose $(F, T) \in I$. Let F' be the facet in $B(G, K)$ whose set of Γ-fixed points is F. In the final paragraph of the proof of [3, Proposition 5.1.10] Bruhat and Tits use [5, Exp. XI, Cor. 4.2] to show that there exists a maximal K-split torus T such that T is defined over k, the apartment $A(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_F(\mathfrak{g}) = G_F^\mathfrak{g}(\mathfrak{g})$ is $T(\mathfrak{g})$. We record this result in the following lemma.

Lemma 2.3.1. If $(F, T) \in I$, then there exists a maximal K-split torus T such that T is defined over k, the apartment $A(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_F(\mathfrak{g})$ is $T(\mathfrak{g})$.

3. The parameterization

In this section, we present a parameterization of C via Bruhat-Tits theory.
3.1. **Strong associativity.** Following [7, 8], in [4, §2.3] the concept of strong associativity is developed. We recall the definition and some of its consequences.

Definition 3.1.1. Two facets F_1 and F_2 of $\mathcal{B}(G)$ are strongly associated if for all apartments \mathcal{A} containing F_1 and F_2, we have

$$A(\mathcal{A}, F_1) = A(\mathcal{A}, F_2).$$

Remark 3.1.2. Two facets F_1, F_2 of $\mathcal{B}(G)$ are strongly associated if and only if there exists an apartment \mathcal{A} containing F_1 and F_2 such that $A(\mathcal{A}, F_1) = A(\mathcal{A}, F_2)$. See [4, Lemma 2.3.3].

Remark 3.1.3. Suppose F_1 and F_2 are strongly associated facets in $\mathcal{B}(G)$. There is an identification of G_{F_1} with G_{F_2}. Namely, the natural Γ-equivariant map

$$G(K)_{F_1} \cap G(K)_{F_2} \to G_{F_1}(\mathcal{F})$$

is surjective with kernel $G(K)_{F_1} \cap G(K)_{F_2} = G(K)_{F_1} \cap G(K)_{F_2}^+ = G(K)_{F_1}^{+} \cap G(K)_{F_2}^{+}$. See, for example, [4, Lemma 2.5.1].

Definition 3.1.4. If F_1 and F_2 are strongly associated facets in $\mathcal{B}(G)$, then we denote the natural identification of G_{F_1} with G_{F_2} introduced above by $G_{F_1} \cong G_{F_2}$.

3.2. **An equivalence relation on I.** We first consider the action of G on I. Suppose $g \in G$ and $(F, T) \in I$. From Lemma 2.3.1 there exists a maximal K-split torus T such that T is defined over k, the apartment $\mathcal{A}(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_{F}(\mathcal{F})$ is $T(\mathcal{F})$.

Define

$$g(F, T) := (gF, ^gT)$$

where gT is the maximal f-torus in G_{gF} whose group of \mathcal{F}-rational points coincides with the image of $^gT(K) \cap G(K)_{gF}$ in $G_{gF}(\mathcal{F})$. From Lemma 2.2.2, this definition is independent of the torus T we choose to represent T.

We are now prepared to introduce a relation on I.

Definition 3.2.1. Suppose (F_1, T_1) and (F_2, T_2) are two elements of I. We will write $(F_1, T_1) \sim (F_2, T_2)$ provided that there exist an apartment \mathcal{A} in $\mathcal{B}(G)$ and $g \in G$ such that

1. $\emptyset \neq A(\mathcal{A}, F_1) = A(\mathcal{A}, gF_2)$ and
2. $T_1 \cong ^gT_2$ in $G_{F_1} \cong G_{gF_2}$.

Lemma 3.2.2. The relation \sim on I is an equivalence relation.

Proof. We will verify that the relation is transitive. The proofs that the relation is reflexive and symmetric are easier and left to the reader.

Suppose $(F_i, T_i) \in I$ for $i = 1, 2, 3$. Suppose $(F_1, T_1) \sim (F_2, T_2)$ and $(F_2, T_2) \sim (F_3, T_3)$. We want to show $(F_1, T_1) \sim (F_3, T_3)$.

There exist $g_2, g_3 \in G$ and apartments \mathcal{A}_{12} and \mathcal{A}_{23} in $\mathcal{B}(G)$ such that

1. $\emptyset \neq A(\mathcal{A}_{12}, F_1) = A(\mathcal{A}_{12}, g_2F_2)$
2. $\emptyset \neq A(\mathcal{A}_{23}, F_2) = A(\mathcal{A}_{23}, g_3F_3)$

and
1. $T_1 = g_2 T_2$ in $G_{F_1} = G_{g_2 F_2}$
2. $T_2 = g_3 T_3$ in $G_{F_2} = G_{g_3 F_3}$

Since $g_2 F_2 \subset A_{12} \cap g_2 A_{23}$, there exists an element $h \in G_{g_2 F_2}$ such that $h g_2 A_{23} = A_{12}$. We have

$$\emptyset \neq A(A_{12}, F_1) = A(A_{12}, g_2 A_{23}) = h g_2 A(A_{23}, F_2) = h g_2 A(A_{23}, g_3 F_3) = A(A_{12}, h g_2 g_3 F_3).$$

Moreover, we have that $G_{F_1} \cap G_{g_2 F_2} \cap G_{h g_2 g_3 F_3}$ surjects, under the natural map, onto $G_{F_1}(f)$ (resp., $G_{g_2 F_2}(f)$, resp., $G_{h g_2 g_3 F_3}(f)$). Thus, there exists $h' \in G_{F_1} \cap G_{g_2 F_2} \cap G_{h g_2 g_3 F_3}$ such that

$$T_1 = g_2 T_2 = h' g_2 T_2 = h' h g_2 g_3 T_3 \text{ in } G_{F_1} = G_{g_2 F_2} = G_{g_2 F_2} = G_{h g_2 g_3 F_3}.$$

3.3. A map from I/\sim to C. From Lemmas 2.2.2 and 2.3.1, the following definition makes sense.

Definition 3.3.1. Suppose $(F, T) \in I$. Let T be any maximal K-split torus such that T is defined over k, the apartment $A(T, K)$ contains F, and the image of $T(K) \cap G(K)_F$ in $G_K(\mathfrak{g})$ is $T(\mathfrak{g})$. Define $C(F, T) \in C$ by setting $C(F, T)$ equal to the G-conjugacy class of $T(k)$.

Remark 3.3.2. If $g \in G$ and $(F, T) \in I$, then $C(F, T) = C(gF, gT)$.

Lemma 3.3.3. The map from I to C which sends $(F, T) \in I$ to $C(F, T)$ induces a well-defined map from I/\sim to C.

Proof. Suppose (F_1, T_1) and (F_2, T_2) are two elements of I. We need to show that if $(F_1, T_1) \sim (F_2, T_2)$, then $C(F_1, T_1) = C(F_2, T_2)$.

Since $(F_1, T_1) \sim (F_2, T_2)$, there exist $g \in G$ and an apartment A in $B(G)$ such that

$$\emptyset \neq A(A, F_1) = A(A, g F_2)$$

and

$$T_1 = g T_2 \text{ in } G_{F_1} = G_{g F_2}.$$

From Remark 3.3.2, we can assume that $g = 1$.

From Lemma 2.3.1 there exists a maximal K-split k-torus T_2 such that $F_2 \subset A(T_2, K)$ and the image of $T_2(K) \cap G(K)_F$ in $G_{F_2}(\mathfrak{g})$ coincides with $T_2(\mathfrak{g})$. Note that $C(F_2, T_2)$ is the G-conjugacy class of $T_2(k)$. It follows from Lemma 2.2.1 (2) that we can choose $h \in G_{F_2}$ such that $B(h T_2, k) \subset A$. Since $\emptyset \neq A(A, F_1) = A(A, F_2) \subset B(h T_2, k)$, we conclude that $F_1 \subset B(h T_2, k)$.

Let T' denote the maximal f-torus in G_{F_1} such that the image of $h T_2(K) \cap G(K)_{F_1}$ in $G_{F_1}(\mathfrak{g})$ coincides with $T'(\mathfrak{g})$. We have

$$T' = h T_2 \text{ in } G_{F_1} = G_{F_2}$$

and

$$T_1 = T_2 \text{ in } G_{F_1} = G_{F_2}.$$
Thus, there exists $h' \in G_{F_1} \cap G_{F_2}$ such that

$$h'T_1 = h'T_2 = h'T = T' \text{ in } G_{F_1} = G_{F_2} = G_{F_2} = G_{F_1}.$$

In other words, $h'T_1 = T'$ in G_{F_1}. We conclude from Lemma 2.2.2 that $\mathcal{C}(F_1, T_1)$ is the G-conjugacy class of $(h')^{-1} h T_2(k)$, i.e., $\mathcal{C}(F_1, T_1) = \mathcal{C}(F_2, T_2)$.

3.4. **A bijective correspondence.** We now prove the main result of this paper.

Theorem 3.4.1. There is a bijective correspondence between I^a/\sim and \mathcal{C} given by the map sending (F, T) to $\mathcal{C}(F, T)$.

Proof. From Lemma 3.3.3, this map is well defined. From Lemma 2.2.1 (3) and Lemma 2.2.2 the map is surjective. It remains to show that the map is injective.

Suppose (F_1, T_1) and (F_2, T_2) are pairs in I^a such that $\mathcal{C}(F_1, T_1) = \mathcal{C}(F_2, T_2)$. We need to show that $(F_1, T_1) \sim (F_2, T_2)$.

For $i = 1, 2$, from Lemma 2.3.1 we can choose a maximal K-split k-torus T_i such that the G-conjugacy class of $T_i(k)$ is $\mathcal{C}(F_i, T_i)$, the apartment $A(T_i, K)$ contains F_i, and the image of $T_i(k) \cap G(K)_F$ in $G_{F_i}(\mathfrak{H})$ is $T_i(\mathfrak{H})$. Since $\mathcal{C}(F_1, T_1) = \mathcal{C}(F_2, T_2)$, there exists a $g \in G$ such that $^g T_2 = T_1$. Let $T = ^g T_2 = T_1$ and let $T = T(k)$.

Note that both F_1 and $g F_2$ lie in $A(T, K)^T = B(T)$. Since (F_1, T_1) is an anisotropic pair, F_1 is a maximal facet in $B(T)$. Similarly, $g F_2$ is a maximal facet in $B(T)$. From Lemma 2.2.1 (4), the facets F_1 and $g F_2$ are strongly associated. Since the image of $T(K) \cap G(K)_{F_1} \cap G(K)_{g F_2}$ in $G_{F_1}(\mathfrak{H})$ (resp., $G_{g F_2}(\mathfrak{H})$) is $T_1(\mathfrak{H})$ (resp., $^g T_2(\mathfrak{H})$), we have

$$T_1 \overset{\sim}{\sim} T_2 \text{ in } G_{F_1} \overset{\sim}{\sim} G_{g F_2}.$$

REFERENCES

\footnote{Available at http://www.math.uchicago.edu/~debacker/links.html.

E-mail address: debacker@math.uchicago.edu

THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637