Homework 11

due Tuesday, December 12

(1) (20 pts) Calculate
\[\lim_{n \to \infty} \sqrt{n^2 + n} - n. \]

(2) (20 pts) If \(\sum_{n=0}^{\infty} a_n \) converges and \(b_n \) is monotonic and bounded, show that \(\sum_{n=0}^{\infty} a_n b_n \) converges.

(3) (20 pts) For which complex numbers \(z \) does the series
\[\sum_{n=0}^{\infty} \frac{1}{1 + z^n} \]
converge?

(4) (20 pts) Find the radius of convergence of the following power series:
(a) \(\sum_{n=0}^{\infty} n^3 z^n \)
(b) \(\sum_{n=0}^{\infty} \frac{2^n}{n^2} z^n \)
(c) \(\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n \)
(d) \(\sum_{n=0}^{\infty} \frac{\alpha^n}{3^n} z^n \)

(5) (20 pts) chapter 23, problem 18

(6) (20 pts) Suppose \((x_n)_{n \in \mathbb{N}} \) is a Cauchy sequence in a metric space \(X \), and that some subsequence converges. Prove that the whole sequence \((x_n) \) also converges.

(7) (20 pts) Let \(X \) be a complete metric space with metric \(d \). A map \(f : X \to X \) is called a contraction if there exists a constant \(0 < c < 1 \) such that for all \(x, y \in X \) we have
\[d(f(x), f(y)) < c \, d(x, y). \]
Show that for any contraction there is \(p \in X \) such that \(f(p) = p \) (a so-called fix point).