Midterm 2

due by November 22, 2000

Name:

Explain your arguments as carefully and clearly as possible.

1. Let X, Y and Z be intervals. Suppose $f : X \mapsto Y$ and $g : Y \mapsto Z$ are uniformly continuous. Show that $g \circ f$ is uniformly continuous.

2. Let $f(x) = \sum_{k=0}^{2n} a_k x^k$ be a polynomial of even degree > 0. Suppose $a_{2n} > 0$, and that $\min \{ f(x) \mid x \in \mathbb{R} \} < 0$. Show that f has at least two zeroes, i.e. there are at least two distinct x with $f(x) = 0$.

3. Let $I_n \neq \emptyset$ be a sequence of closed intervals such that $I_{n+1} \subset I_n$. Show that $\cap_{n=1}^{\infty} I_n \neq \emptyset$.

4. Let f_n be a sequence of continuous functions on a closed interval I converging uniformly to f. Is it true that the $\max \{ f_n(x) \mid x \in I \}$ converges to $\max \{ f(x) \mid x \in I \}$? Prove your claim.

5. Show that if $\sum_{k=0}^{\infty} | a_k | < \infty$. Show that $\sum_{k=0}^{N} a_k x^k$ converges uniformly to a continuous function on $[-1, 1]$.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>