1. Let \(X \) be the space obtained by gluing the northpole of \(S^2 \) to the south pole of \(S^2 \). Calculate \(\pi_1(X) \).

2. Let \(X \) be the union of \(n \) lines through the origin in \(\mathbb{R}^3 \). Compute \(\pi_1(\mathbb{R}^3 - X) \).

3. Let \(F \) be a finitely generated free group, and \(N \) an infinite index normal subgroup. Show that \(N \) is not finitely generated, using covering space theory.

4. Let \(M \) be a path connected 3-manifold and let \(x, y \in M \).
 a) Prove that \(\pi_1(M, y) \) is isomorphic to \(\pi_1(M - \{x\}, y) \).
 b) Is the same statement true for all \(n \)-manifolds and all \(n \in \mathbb{Z}_+ \)?

5. Let \(S \) be a compact surface (without boundary) with \(n \) points deleted, a so-called punctured surface with \(n \) punctures. Show that the fundamental group of \(S \) is a free group if \(N \geq 1 \). What is the number of generators?