Problem Set 9 – due December 9

See the course website for policy on collaboration.

Problem 1. (a) Write \(d(x^2 + y^2) \) in terms of \(dx \) and \(dy \).
(b) Let \(g(u, v) = (e^u \cos v, e^u \sin v) \). Compute \(g^* d(x^2 + y^2) \) directly from your answer to (a).
(c) Check that the result is equal to \(d\left((e^x \cos y)^2 + (e^x \sin y)^2\right) \).

Problem 2 Let \(\gamma \) be a circle in \(\mathbb{R}^2 \) centered at 0, oriented counter clockwise. Compute \(\int_{\gamma} xdy - ydx \).

Problem 3 This problem asks you to verify by brute force something which we will soon have much better tools to prove.
Let \(A \) and \(B \) be open sets in \(\mathbb{R}^2 \). We write \((u,v)\) for the coordinates on \(A \) and \((x,y)\) for the coordinates on \(B \). Let \(\phi \) be a smooth map from \(A \) to \(B \). Let \(\omega = p(x,y)dx + q(x,y)dy \) be a differential form on \(B \) and let \(\phi^*\omega = f(u,v)du + g(u,v)dv \).
Show that \(\frac{\partial g}{\partial u} - \frac{\partial f}{\partial v} = \det(D\phi) \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y} \right) \).

Problem 4 Let
\[
\mathcal{Q} = \left\{ (\alpha, \beta) : \begin{array}{c}
0 < \alpha, \beta \\
2\alpha + \beta, \alpha + 2\beta < \pi
\end{array} \right\}
\]
\[
\mathcal{A} = \left\{ (x,y) : e^{-x} + e^{-y} < 1 \right\}
\]
Consider the system of equations
\[
e^{-x} \sin \alpha = e^{-y} \sin \beta \quad (\star)
e^{-x} \cos \alpha + e^{-y} \cos \beta = 1
\]
(a) Show that there is a bijection \((x,y) \to (\alpha(x,y), \beta(x,y))\) from \(\mathcal{Q} \) to \(\mathcal{A} \) so that \((x,y,\alpha(x,y),\beta(x,y))\) obeys the equations \((\star)\). We’ll use this to think of \(\alpha \) and \(\beta \) as functions on \(\mathcal{Q} \).
(b) Write down two (nonzero, non-proportional) linear relations between the four 1-forms \(dx, dy, d\alpha \) and \(d\beta \) on \(\mathcal{Q} \).
(c) Show that
\[
det \begin{pmatrix}
\frac{\partial \alpha}{\partial x} & \frac{\partial \alpha}{\partial y} \\
\frac{\partial \beta}{\partial x} & \frac{\partial \beta}{\partial y}
\end{pmatrix} = 1.
\]
Explain why this implies that \(\mathcal{A} \) and \(\mathcal{Q} \) have the same area. (The slickest way to do this is to write the Jacobian matrix as the product of two simpler \(2 \times 2 \) matrices, so that you never need to compute the individual entries of the Jacobian.)
(d) Compute the area of \(\mathcal{Q} \).
(e) Show that the area of \(\mathcal{T} \) is
\[
\int_0^{\infty} -\log(1 - e^{-x})dx.
\]
(f) Show that the integral in (e) is equal to \(\sum_{n=1}^{\infty} \frac{1}{n^2} \). (Yes, you need to justify moving the sum past the integral.)